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Abstract. Deterministic approaches using iterative optimisation have
been historically successful in diffeomorphic image registration (DiffIR).
Although these approaches are highly accurate, they typically carry
a significant computational burden. Recent developments in stochastic
approaches based on deep learning have achieved sub-second runtimes
for DiffIR with competitive registration accuracy, offering a fast alter-
native to conventional iterative methods. In this paper, we attempt to
reduce this difference in speed whilst retaining the performance advan-
tage of iterative approaches in Diff[R. We first propose a simple iterative
scheme that functionally composes intermediate non-stationary velocity
fields to handle large deformations in images whilst guaranteeing dif-
feomorphisms in the resultant deformation. We then propose a convex
optimisation model that uses a regularisation term of arbitrary order to
impose smoothness on these velocity fields and solve this model with a
fast algorithm that combines Nesterov gradient descent and the alter-
nating direction method of multipliers (ADMM). Finally, we leverage
the computational power of GPU to implement this accelerated ADMM
solver on a 3D cardiac MRI dataset, further reducing runtime to less
than 2s. In addition to producing strictly diffeomorphic deformations,
our methods outperform both state-of-the-art deep learning-based and
iterative DiffIR approaches in terms of dice and Hausdorff scores, with
speed approaching the inference time of deep learning-based methods.
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1 Introduction

Over the past two decades, diffeomorphic image registration (DiffIR) has become
a powerful tool for deformable image registration. The goal of DiffIR is to find a
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smooth and invertible spatial transformation between two images, such that every
point in one image has a corresponding point in the other. Such transformations are
known as diffeomorphisms and are fundamental inputs for computational anatomy
in medical imaging.

Beg et als. pioneering work developed the large-deformation diffeomorphic
metric mapping (LDDMM) framework [5], formulated as a variational prob-
lem where the diffeomorphism is represented by a geodesic path (flow) param-
eterised by time-dependent (non-stationary) smooth velocity fields through an
ordinary differential equation. Vialard et al. proposed a geodesic shooting algo-
rithm [24] in which the geodesic path of diffeomorphisms can be derived from
the Euler-Poincaré differential (EPDiff) equation given only the initial velocity
field. In this case, geodesic shooting requires only an estimate of the initial veloc-
ity rather than the entire sequence of velocity fields required by LDDMM [5],
thus reducing the optimisation complexity. Recently, Zhang et al. developed the
Fourier-approximated Lie algebras for shooting (FLASH) [28] for DiffIR, where
they improved upon the geodesic shooting algorithm [22,24] by speeding up the
calculation of the EPDiff equation in the Fourier space. However, solutions of
these approaches [5,24,28] reply on gradient descent, which requires many iter-
ations to converge and is therefore very slow. To reduce the computational cost
of DiffIR, Ashburner represented diffeomorphsims by stationary velocity fields
(SVFs) [1], and proposed a fast DiffIR algorithm (DARTEL) [2] by compos-
ing successive diffeomorphisms using scaling and squaring. However, SVF's do
not provide geodesic paths between images which may be critical to statistical
shape analysis. Another approach for fast DiffIR is demons [23], although this
is a heuristic method and does not have a clear energy function to minimise.

An alternative approach to improve DiffIR speed is to leverage deep learning,
usually adopting convolutional neural networks (CNNs) to learn diffeomorphic
transformations between pairwise images in a training dataset. Registration after
training is then achieved efficiently by evaluating the network on unseen image
pairs with or without further (instance-specific) optimisation [4]. Deep learning
in DiffIR can be either supervised or unsupervised. Yang et al. proposed Quick-
silver [26] which utilises a supervised encoder-decoder network as the patch-wise
prediction model. Quicksilver is trained with the initial momentum! of LDDMM
as the supervision signal, which does not need to be spatially smooth and hence
facilitates a fast patch-wise training strategy. Wang et al. extended FLASH [28]
to DeepFLASH [25] in a learning framework, which predicts the initial veloc-
ity field in the Fourier space (termed the low dimensional bandlimited space in
their paper). DeepFLASH is more efficient in general as the backbone network
consists of only a decoder. As Quicksilver and DeepFLASH need to be trained
using the numerical solutions of LDDMM [22] as ground truth, their performance
may be bounded by that of LDDMM [22]. Dalca et al. proposed diffeomorphic
VoxelMorph [9] that leverages the U-Net [20] and the spatial transformer net-
work [15]. Mok et al. developed a fast symmetric method (SymNet) [18] that
guarantees topology preservation and invertibility of the transformation. Both

! Momentum is the dual form of velocity. They are connected by a symmetric, positive
semi-definite Laplacian operator as defined in Eq. (6).
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Voxelmorph and SymNet impose diffeomorphisms using SVFs in an unsuper-
vised fashion. Whilst the fast inference speed of deep learning is a clear benefit,
the need for large quantities of training data and the lack of robust mathematical
formulation in comparison with deterministic iterative approaches means both
paradigms still have their advantages.

The goal of this study is to reduce the speed gap between learning-based and
iterative approaches in DiffIR, while still retaining the performance advantage of
iterative approaches. We first propose an iterative scheme to decompose a diffeo-
morphic transformation into the compositions of a series of small non-stationary
velocity fields. Next, we define a clear, general and convex optimisation model to
compute such velocity fields. The data term of the model can be either £ or £2
norm and the £2 regularisation term uses a derivative of arbitrary order whose
formulation follows the multinomial theorem. We then propose a fast solver for
the proposed general model, which combines Nesterov acceleration [19] and the
alternating direction method of multipliers (ADMM) [6,13,17]. By construc-
tion, all resulting subproblem solutions are point-wise and closed-form without
any iteration. As such, the solver is very accurate and efficient, and can be
implemented using existing deep learning frameworks (e.g. PyTorch) for further
acceleration via GPU. We show on a 3D cardiac MRI dataset that our methods
outperform both state-of-the-art learning and optimisation-based approaches,
with a speed approaching the inference time of learning-based methods.

2 Diffeomorphic Image Registration

Let ¢ : R® — R3 denote the deformation field that maps the coordinates from
one image to those in another image. Computing a diffeomorphic deformation
can be treated as modelling a dynamical system [5], given by the ordinary differ-
ential equation (ODE): 0¢/0t = v¢(¢:), where ¢g = Id is the identity transfor-
mation and v; indicates the velocity field at time t (€ [0, 1]). A straightforward
approach to numerically compute the ODE is through Euler integration, in which
case the final deformation field ¢; is calculated from the compositions of a series
of small deformations. More specifically, a series of N velocity fields are used to
represent the time varying velocity field v;. For N uniformly spaced time steps
(0,¢1,t2, ..., tN—2,tN—1), ¢1 can be achieved by:

¢ = (Id+ %) o (Id+%) 0...0 (Id+%) o (Id+v—z\(])>, (1)
where o denotes function composition. This greedy composite approach is seen
in some DiffIR works [7,23] and if the velocity fields vy,,Vi € {0,...,N — 1}
are sufficiently small whilst satisfying some smoothness constraint, the resulting
compositions should result in a deformation that is diffeomorphic [8].

The fact that the numerical solver (1) requires small and smooth velocity
fields motivates us to consider classical optical flow models, among which a
simple yet effective method was proposed by Horn and Schunck (HS), who com-
puted velocity v through miny{3||(VI1,v) + I — Io||® + 3|V} [14]. In the
minimisation problem, the first data term imposes brightness constancy, where
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Ip € RMNH (M NH is the image size) and I; € RMNH are a pair of input images
and (-, ) denotes inner product. The second regularisation term induces spatial
smoothness on v € (RMNH)3 where \ is a hyperparameter and V denotes the
gradient operator. As the HS data term is based on local Taylor series approxi-
mations of the image signal, it is only capable of recovering small velocity fields,
which together with the smooth regularisation makes the HS model perfect to
combine with (1) for effective diffeomorphic registration.

Based on this observation, we propose a simple iterative scheme for DiffIR. For
a pair of images Iy (target image) and I (source image), first we solve the HS
model for v, . Of note, as both terms in the HS model are linear and quadratic,
if we derive the first-order optimality condition with respect to v from the model,
we end up with a system of linear equations (i.e. regularised normal equation),
which can be solved analytically by matrix inversion. We then warp the source
image I; to I{ using IY = I o (Id + v}, ). Note that we set the denominator
coeflicient NV to 1 in this paper. Next, we pass I} and Iy to the HS model again
and solve for v; __, with which we update the warped source image I}’ with Iy =
Lio(Id+vy,_ )o(Id+v}, ). Werepeat this iterative process until that the final
warped source image I’ = Iyo(Id+vj,  )o(Id+v;, ,)o...o(Id + v; )o(Id + v§)
is close to the target image Iy within a pre-defined, small and positive tolerance.
We note that unlike [5,22,24, 28] there is no need for the proposed iterative scheme
to pre-define the number of velocity fields as it is automatically computed based
on the similarity between the warped and target images, however we can and will
impose a restriction on the number of iterations to reduce computation time.

The HS model however suffers from the fact that the quadratic data term is
not robust to outliers and that the first-order diffusion regularisation performs
poorly against large deformations (which often requires an additional affine linear
pre-registration to be successful [12]). To circumvent these shortcomings of the
HS model, we propose a new, general variational model, given by

: 1 S A n
win { ol + 31912 )

where p(v) = (VI1,v) +I; — Iy, s = {1,2} and n > 0 is an integer number.
V™ denotes an arbitrary order gradient. For a scalar-valued function f(z,y, 2),
vVrf = [(kh]%, kg)(,mlgy%]rf, where k; = 0,...,n,1 € {1,2,3} and k1 + ko +
ks = n. Moreover, (f, ]?2’ ks ) are known as multinomial coefficients which are

computed by ﬁ;'ks' Note that if we set s = 2 and n = 1, the proposed model
is recovered to the original HS model. However, if we set s = 1, the data term
will be the sum absolute differences (SAD) [27] which is more robust to outliers
in images. On the other hand, the proposed regularisation has a general form,
which allows reconstruction of a smooth polynomial function of arbitrary degree
for the velocity. Unfortunately, solving the proposed model becomes non-trivial
due to the non-differentiality in the data term and the generality in the derivative
order. We note that even if we only solve the original HS model, we still need
to do matrix inversion which is impractical for 3D high-dimensional data used
in this paper. To address these issues, we propose an effective algorithm in the
following section to minimise the proposed convex model efficiently.
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3 Nesterov Accelerated ADMM

In order to minimise the convex problem (2) efficiently, we utilise the alternating
direction method of multipliers (ADMM) [6,13,17] accelerated by Nesterov’s
approach for gradient descent methods [19]. First, we introduce an auxiliary
primal variable w € (RMNH)3 converting (2) into the following equivalent form

(1 oA
win {1 + 19wl | st =, 3)

The introduction of the constraint w = v decouples v in the regularisation from
that in the data term so that we can derive closed-form, point-wise solutions with
respect to both variables regardless of the non-differentiality and generality of the
problem (2). To guarantee an optimal solution, the above constrained problem
can be converted to a saddle problem solved by the proposed fast ADMM. Let
L 4(v,w;b) be the augmented Lagrange functional of (3), defined as

1 D Y. 0
La(v,wib) = ~[o()]* + SIV Wl + 5 [lw — v = b, @

where b € (RMNH)3 g the augmented Lagrangian multiplier (aka. dual vari-
able), and 6 > 0 is the penalty parameter which has impact on how fast the
minimisation process converges. It is known that one of the saddle points for (4)
will give a minimiser for the constrained minimisation problem (3). We use the
Nesterov accelerated ADMM to optimise variables in (4), which is given as

vk = argmin L o()]]* + 4% — v — B2
v
wk = argmin || V"w|? + g”W — vk —bk|?
w
bk:bk—‘rvk—wk . (5)
k+1 _ 1+ 144(ek)?
afth = .
i\Vk+1 = wh 4 2i=l(wh — wh1)
bkl = pF + (;1;11 (bk _ bkfl)

At the beginning of the iteration, we set W1 = W° = 0, b~! = b® = 0 and
a® = 1. k above denotes the number of iterations. As can be seen from (5), we
decompose (4) into two convex subproblems with respect to v and w, update the
dual variable b, and then apply Nesterov’s acceleration to both primal variable
w and dual variable b. This accelerated iterative process is repeated until the
optimal solution v* is found. The convergence of this accelerated ADMM has
been proved in [13] for convex problems and the authors have also demonstrated
the accelerated ADMM has a convergence rate of O(1/k?), which is the optimal
rate for first-order algorithms. Moreover, due to the decoupling we are able to
derive a closed-form, point-wise solution for both subproblems of v and w

szwkfgkfm% lfS:].
(JIT + 01k = O(WF —bF) —J(I, — 1)) ifs=2. (6)

wk = F=1(F(vF + b*) /(AF(A™) + 6))
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In the case of s = 1, we have 2 = Op(WF —‘B"“)/(\Vll\2 +€), where ¢ > 0 is
a small, positive number to avoid division by zeros. In the case of s = 2, JJT
(where J = V1) is a rank-1 outer product and 1 is an identity matrix. As the
respective v-subproblem in this case is differentiable, we can derive the Sherman—
Morrison formula (i.e. see (6) middle equation) by directly differentiating this
subproblem. Due to the identity matrix, the Sherman—Morrison formula [23] will
lead to a closed-form, point-wise solution to v¥. In the last equation, F and F~*
respectively denote the discrete Fourier transformation (DFT) and inverse DFT,
and A" is the nth-order Laplace operator which are discretised via the finite
difference [11,17]. In this case, F(A™) = 2" (3 —cos( %) — cos(2x%) — cos( Z2))™,
where p € [0, M), ¢ € [0,N) and r € [0, H) are grid indices. We note that all
three solutions are closed-form and point-wise, and therefore can be computed
very efficiently in 3D.

4 Experimental Results

Dataset: The dataset used in our experiments consists of 220 pairs of 3D high-
resolution (HR) cardiac MRI images corresponding to the end diastolic (ED) and
end systolic (ES) frames of the cardiac cycle. The raw volumes have a resolution of
1.2 x 1.2 x 2.0mm?®. HR imaging requires only one single breath-hold and there-
fore introduces no inter-slice shift artifacts [10]. Class segmentation labels at ED
and ES are also contained in the dataset for the right ventricle (RV), left ven-
tricle (LV) and left ventricle myocardium (LVM). All images are resampled to
1.2x 1.2 x 1.2 mm?3 resolution and cropped or padded to matrix size 128 x 128 x 96.
To train comparative deep learning methods and tune hyperparameters in differ-
ent methods, the dataset is split into 100/20/100 corresponding to training, valida-
tion and test sets. We report final quantitative results on the test set only (Table 1).

Hyperparameter Tuning: We embed our approach into a three-level pyramid
scheme to avoid convergence to local minima, resulting in a total of three loops
in the final implementation. We tune two versions of hyperparameters for our
model, the first with limited iterations to minimise runtime, and the second
without such restrictions leading to a slower runtime but higher accuracy. For the
first, we restrict the iteration number within the ADMM loop in (5) to ten in the
first pyramid level and five in the following two levels. We also cap the number of
warpings in (1) to ten in the first two pyramid levels and five in the final level. For
the second, iterations are only terminated when a convergence threshold (range
[0.01,0.13]) for the ADMM loop is met and the difference between two warpings
is below 2%. This range of thresholds ensures runtime is competitive with other
iterative methods whilst increasing accuracy compared to our first version. For
both versions, the validation set is used to tune hyperparameters A (range [0, 60])
and € (range [0.01,0.15]) to maximise dice score for each combination of data
term (£2 or £!) and regulariser of order 1 to 3 (1**0, 2"O or 370). See
supplementary for the optimal values of A and 6.

Comparative Methods: We compare our methods against a variety of state-of-
the-art iterative and deep learning-based image registration methods. For iter-
ative methods, we use the MIRTK implementation of free form deformations
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Fig. 1. A toy experiment showing evolution of diffecomophism throughout iterations
using our method. Rows one to four correspond to image, grid deformation, HSV
deformation and jacobian determinant, respectively. Columns one to eight correspond
to increasing iterations.

(FFD) [21] with a three-level pyramid scheme. Control point spacing is selected
to maximise dice score on the validation set. We also compare with the popu-
lar diffeomorpic demons algorithm [23] implemented in SimpleITK [16], using
a three-level pyramid scheme. The number of iterations and smoothing \'s are
optimised on the validation set. We also compare with ANTs SyN [3] using
the official ANTs implementation with mean square distance and four registra-
tion levels. The hyper-parameters such as smoothing parameters, gradient step
size, and the number of iterations are selected based on the validation set. For
deep learning, we train both VoxelMorph [4] and its diffeomorphic version [9]
on the training set. We adopt a lighter 5-level hierarchical U-shape network
[18] than the original Voxelmorph paper [4] as our 128 x128x96 images require
significant GPU memory. Both VoxelMorphs are optimised under an SAD loss
defining image similarity, a diffusion regularisation loss to enforce smoothness of
the velocity field and a local orientation consistency loss [18] that regularises the
Jacobian determinant of the velocity field. For the diffeomorphic VoxelMorph,
an additional 7 scaling and squaring layers are used to encourage diffeomorphic
properties in the resulting deformation. The weights of smoothness regularisa-
tion and local orientation consistency are tuned to 0.1 and 1000 respectively on
the validation set, and both trained for 30000 iterations with batch size 2 and
learning rate 0.0001 on a GTX 1080Ti GPU. Training takes around 13 h.

Quantitative Results: To evaluate performance, we use the deformations pro-
duced by each method to warp the associated source (ES) class label to its cor-
responding target (ED) label. The warped source and target labels are then used
to compute the dice similarity coefficient and Hausdorff distance between pairs,
with Hausdorff distances averaged over each 2D slice within the 3D volumes. We
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Fig. 2. Visual results of different methods. Column 1: target image, target label, source
image, source label. Columns 2-8: warped source image, warped source label, gridg,
HSVy, det(Jy) for (1) Voxelmorph, (2) SyN, (3) Demons, (4) diffeomorphic voxelmorph,
(5) FFD, (6) £'4+3"0 and (7) £2+3"?0, respectively.

compute the percentage of non-positive voxels in the Jacobian J4 of each defor-
mation ¢ to assess its diffeomorphic properties, for which a purely diffeomorphic
deformation should be zero everywhere. We also compare runtime, measuring
speed of iteritive methods and inference time for two Voxelmorph models. All
methods using a GPU are tested on a 16GB NVIDIA Tesla V100.

Table 1. Statistics of each method averaged over test set. Dice and Hausdorff scores
are denoted as an average across RV, LV and LVM. Standard deviations are shown
after +. Hausdorff distance is measured in mm and runtime in seconds. Results of our
methods using 2nd hyperparameter version are given in brackets.

Method Dice Hausdorff % of |Jy| < 0| Runtime

Unreg 493 +.043 8.404 4+ 0.894

Voxelmorph 709 +.032 7.431£1.049 0.01£0.01 0.09+0.23

SyN 721+ .051 6.979£1.233 0.00£0.00 77.39+£9.57

Demons 727+ .040 6.740 £0.998 0.00£0.00 13.01+£0.17
Diff-Voxelmorph | .730 +.031 6.498 £0.975 0.01+0.01 0.09+0.21

FFD 739+£.047 7.0444+1.200 0.774+0.30 8.98 £1.97

L4100 7274039 (728 £.040) | 6.949 £1.056 (6.911+1.092) |00 (0=£0) | 1.63 .26 (7.90 % .79)
L241°°0 7194 .039 (726 £.041) | 7.499 £1.227 (7.10541.199) |00 (0=£0) | 2.17 4 .50 (4.69 = .34)
£'+42m0 7494 .042 (761 £ .041) | 6.891 % 1.134 (6.364+£1.036) | 00 (0£0) | 1.43%.05 (5.02 % .57)
L£24270 .735+.043 (.7514.045) |6.895+1.212 (6.855+1.231) |0+0 (0+0)|1.38+.04 (5.00 £ .41)
£'4370 753+ .042 (.768 +.042) | 6.963+ 1.100 (6.515+1.077) | 0=+0 (0+0) | 1.57+.24 (4.49 + .56)
£24370 736+.042 (757 +.046) | 7.302+ 1.237 (6.927+1.264) | 0=+0 (0+0) | 1.37+.03 (4.72+.41)
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In Fig. 2, we show the visual comparison between all methods, where gridy
shows the deformation applied to a unit grid, det(Js) the jacobian determinant
and HSV the final composition of each iterative velocity field, with hue depict-
ing direction and saturation magnitude. In Table 1, we show the final results of
each method averaged over the test set. Results from both versions of hyper-
parameters are displayed with the latter in brackets. It can be seen that our
accelerated ADMM outperforms all other methods by at least 1% in terms of
dice score despite limiting the number of iterations and warpings, increasing to
nearly 3% for our second version. There is also a clear upward tendency in dice
(see Fig.3), further demonstrating the superiority of our methods. Moreover,
our methods consistently maintain diffeomorphic properties with no negative
elements present in Jg. Although the speed of our method is still slower than
deep learning methods, the average runtime we achieved for our first hyperpa-
rameter version is barely over a second.

Dice score
5 5 5

Hausdorff distance

s o @

M
variable variable

= Unreg [ Voxelmorph [ SyN [E=H Demons [ DiffVoxelmorph T FFD T3 L!'+1%0 3 L2+41%0 [E3 L'+2Y0 B L2+2Y0 =3 L'+39 L2430

Fig. 3. Boxplots of Dice and Hausdorff for left ventricle (LV), left ventricle myocardium
(LVM) and right ventricle (RV) of all methods on test set.

5 Conclusion

In this paper, we proposed an accelerated algorithm that combines Nesterov
gradient descent and ADMM, which tackles a general variational model with
a regularisation term of arbitrary order. Through the compositions of a series
of velocity fields produced by our accelerated ADMM, we model deformations
as the solution to a dynamical system to ensure diffeomorphic properties. We
implement our methods in the PyTorch framework, leveraging the power of a
GPU to further accelerate our methods. In addition to reducing the difference
in speed between deep learning to under 2s, our methods have achieved a new
state-of-the-art performance for the DiffIR task.
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