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Abstract—Data distribution gaps often pose significant chal-
lenges to the use of deep segmentation models. However, retraining
models for each distribution is expensive and time-consuming.
In clinical contexts, device-embedded algorithms and networks,
typically unretrainable and unaccessable post-manufacture, exac-
erbate this issue. Generative translation methods offer a solution to
mitigate the gap by transferring data across domains. However, ex-
isting methods mainly focus on intensity distributions while ignor-
ing the gaps due to structure disparities. In this paper, we formulate
a new image-to-image translation task to reduce structural gaps.
We propose a simple, yet powerful Structure-Unbiased Adversarial
(SUA) network which accounts for both intensity and structural
differences between the training and test sets for segmentation. It
consists of a spatial transformation block followed by an intensity
distribution rendering module. The spatial transformation block
is proposed to reduce the structural gaps between the two images.
The intensity distribution rendering module then renders the de-
formed structure to an image with the target intensity distribution.
Experimental results show that the proposed SUA method has the
capability to transfer both intensity distribution and structural
content between multiple pairs of datasets and is superior to prior
arts in closing the gaps for improving segmentation.

Index Terms—Cardiovascular imaging (CMR), diffeomorphic
image registration, generative adversarial network, medical
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I. INTRODUCTION

M EDICAL imagesegmentation [1], [2] has been a hot topic
in the last few decades, in particular, deep learning based

techniques [3], [4] have drawn lots of attention. These methods
often assume that the training and test data follow the same
distribution. However, domain gaps often exist between data
from different sources, e.g., the data from different hospitals
or clinic centers is often captured by different machines with
different settings. In addition, as imaging technology continues
to progress, old machines become outdated and are therefore
replaced by their modern counterparts. Therefore, even the new
data and the accumulated data from the same place have different
distributions. When it comes to performing inference using deep
learning techniques, such differences between the training and
inference distributions can degrade performance significantly.
However, it is clear that recollecting and labelling the required
training data for each distribution is hugely expensive and time-
consuming. Therefore, the effective use of labelled data from
previous devices or settings is vital.

To solve this issue, transfer learning methods [5], [6], [7], such
as unsupervised domain adaptation (UDA) [2], [8], [9], [10], are
possible ways to map the data into a different space such that the
domain gaps between the source domain and target domain are
minimized. A limitation of such approaches is that they often
require the model to be retrained or its latent features to be
accessed. However, networks and labels compiled to software
can not be touched in clinical applications. Recently, generative
adversarial models have been proposed to tackle this problem
by transferring the intensity distributions from source to target
domain and reducing the domain gaps. In this task, the input
image is transferred (adapted) and then tested with a model
trained on the original labelled data. Specifically, this task has
been defined in [11] and is considered to be different from UDA
or other similar problems.

Previously, Chen et al. [12] proposed a MUNIT based model
to transfer the intensity distribution of the source dataset to
that of the target dataset by maintaining the content in the
latent space. Zhang et al. [13] proposed to generate new images
by maintaining the main edges in the images. However, these
methods overlooked the differences in structure statistics. In fact,
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Fig. 1. Images illustrate the domain shift problem, with green and orange lines
showing differences in intensity distribution and structure compared to the target
image. The comparison images on the right side highlight that structural gaps,
e.g., curve, position and anatomy, are challenging to mitigate through translation
methods that keep the structure unchanged. Specifically, x represents a sample
from the source dataset, while y represents a sample from the target dataset. The
purple and green regions indicate areas where the representation in (b) differs
from (c), and where the representation in (c) differs from (b), respectively.

the structures captured using various imaging techniques can be
different due to the nature of imaging principles. For instance,
the curvatures of the objects of interest in images are largely
affected by scales. Fig. 1 shows two OCT images (a) and (b)
from different manufacturers. As shown in sub-image (a), not
only structures but also intensities are different from the target
(b). Therefore, we have a task with contradictive objectives:
on the one hand, we hope to maintain the contents/edges in
the generated data for the subsequent analysis. It leads to the
propagation of the structural gap. On the other hand, we hope
to eliminate the structural gap as the generated and real data are
supposed to be indistinguishable to the discriminator. Overall,
we present the translation problem to closing the existing do-
main gaps of structure and intensity distribution and improve
the segmentation performance. For this segmentation problem
under consideration, a model is meticulously trained using target
domain images alongside their associated masks. The trained
model is subsequently tested on the samples translated from
source domain to target domain.

In this paper, we propose a simple yet important structure
unbiased adversarial approach (SUA) to overcome the above is-
sue. It extracts the main structures from the image and translates
them separately such that both structures and intensities gaps are
reduced. With this translation, it is expected that the performance
of models trained on the training data (target) will improve when
tested on data (source) from a different distribution. Finally, we
also compute an inverse deformation field to warp the segmen-
tation result back to its original domain, which is an essential
step to obtain the segmentation for the original images. Note that
our method is different from a spatial deformation followed by a
structure-preserving GAN. To better understand the motivation
of the proposed method, we use T-SNE [14] to visualize OCT
images after different processing in Fig. 2. As shown, there is
a large gap between the data from the two domains indicated
by the yellow and blue dots. Although a deformation could
reduce the gap, the gap due to intensity distributions remain,

as shown in (b). Similarly, (c) illustrates that after applying a
structure preserving GAN to the images they can still be distin-
guished. Whilst applying a deformation followed by a structure
preserving GAN is able to reduce the gap, the deformation
causes significant texture distortions. Such distortions cannot
be removed by the structure-preserving translation GAN, as is
described in Section IV-A3. Additionally, a brief illustration of
the proposed method compared with other translation methods
is shown in Fig. 3.

The main contributions of the paper are summarized as fol-
lows:
� We find that the domain gaps exist in not only the intensity

distributions but also in the image structures. Then we
identify an important image-to-image translation problem
which helps to reduce domain gaps associated with both
image structure and intensity distributions. By taking this
advantage, we demonstrate the effectiveness of our method
for medical image segmentation.

� We propose a novel SUA network to tackle domain gaps
in segmentation problem by a novel image-to-image trans-
lation strategy. Specifically, the proposed method has the
capability to translate images by reducing the structural
and intensity gaps with a spatial transformation block and
a structure rendering mapping respectively.

� Extensive experiments on two retinal OCT datasets, a
chest CT & MRI paired dataset and two cardiac datasets
show that the proposed method is able to transfer both
structure shapes and intensity distributions effectively with
improved subsequent segmentation results.

II. RELATED WORKS

A. Generative Adversarial Networks (GANs)

GANs [15], [16] are originally proposed to generate images
from random inputs in an unconditional manner. They contain
a generator and a discriminator; the generator aims to output
samples to be indistinguishable from the training samples while
the discriminator tries to differentiate them. Recently, many
conditions have been proposed and integrated into GANs for
various applications such as image segmentation [8], [17], [18],
image synthesis [19], super-resolution [20], image reconstruc-
tion [21], [22], [23], medical image translation [24], [25], [26],
[27] and text-to-images synthesis [28]. Such conditional GANs
are generally divided into paired image-to-image translation and
unpaired image-to-image translation.

B. Paired Image-to-Image Translation

Paired image-to-image translation methods are trained on a
paired dataset to obtain a mapping which converts an image from
one domain to another [17], [29]. Earlier, many paired image-
to-image translation algorithms have been proposed for various
tasks, e.g, super resolution [20], image segmentation [30], [31],
[32], [33], spatial transformation, denoising, etc. Isola et al. [17]
proposed pix2pix which can be applied to general translation
tasks. However, it is often difficult to obtain paired training data
to train models of this type.
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Fig. 2. Illustrations of domain shift issues using T-SNE. Yellow and blue dots indicate images from two different domains. From left to right, figures are plotted
based on: (a) original data points; (b) data points transformed by spatial deformation; (c) data points transferred by structure-preserving GAN; (d) data points
transformed first by spatial deformation followed by structure-preserving GAN; and (e) data points transferred by our proposed SUA method. The second row shows
samples from the source domain, target domain, and results transformed by each method: Spatial deformation, structure-preserving GAN, spatial deformation
followed by structure-preserving GAN, and our method.

Fig. 3. Illustration of pipelines of translation methods for segmentation: (1)
Trained segmentation model without domain adaptation; (2) Translation GAN;
(3) Structure preserving GANs, and (4) our GAN with learnable deformation
(more details in Fig. 4).

C. Unpaired Image-to-Image Translation

Unpaired methods are trained on unpaired image datasets,
i.e., for each sample in one dataset, there are no corresponding

samples in the other dataset. Donahue et al. [34] established
an unsupervised generative adversarial method named BiGAN,
which uses feature learning and representation to translate the
data. Zhu et al. [35] proposed a cycle-consistent adversarial
network (Cycle-GAN), which consists of forward and backward
cycle models for unsupervised image-to-image translation. Kim
et al. [36] invented DiscoGAN to seek the relationship between
source and target domains. Huang et al. [37] proposed MUNIT,
which separates content and intensity distributions in the latent
space and achieves translation by switching intensity distribu-
tions. Yan et al. [38] presented an improvement of CycleGAN,
which reduces the domain gaps between cardiac images obtained
on devices from different vendors. Zhang et al. [13] proposed
an approach to generate new images while preserving the main
edges in the original images. Guo et al. [39] proposed SCCGAN
which has a similar ability to preserve structures of source
images during translation through a structure consistency con-
straint. Fourier-transform-based style translation methods [40],
[41], [42] also demonstrate notable proficiency in efficiently
translating images while preserving essential structural details.
These techniques function by decomposing images into low-
frequency and high-frequency components, with the latter cap-
turing object structures resembling the identity. Choi et al. [43]
proposed an image-to-image translation network named Star-
GAN v2 based on StarGAN which can translate the image with
richer textures than CycleGAN. Many other implementations of
StarGAN in medical image translation have since been estab-
lished. For example, Abu-Srhan et al. [44] proposed a TarGAN
based on StarGAN architecture and cycle-consistency loss for
multi-modal image translation, and Bashyam et al. [45] utilized
StarGAN v2 on Brain MRI domain translations. Diffusion-based
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method DDIB [46], which transfers images by connecting source
and target noising distributions through Schrödinger bridge.
Since unpaired methods do not require paired samples, these
methods are more convenient to practically apply and attract
more attention for reducing domain gaps. These unpaired meth-
ods transfer the intensity distributions between domains and
reduce the domain gaps to a certain extent. However, existing
methods mainly consider the gap between intensity distributions
while failing to capture changes in structure, which is vital for
medical image segmentation.

D. Spatial Deformation

Spatial deformation estimates a mapping between a source
image and a target image, and the resultant deformation can be
used to warp the source image such that it has similar struc-
ture to that in the target domain. Among different approaches,
diffeomorphism is an important feature which describes an
invertible function that maps one differentiable deformation to
another such that both the function and its inverse are differen-
tiable [47]. Conventional iterative diffeomorphic methods such
as LDDMM [47], Dartel [48], ANTs [49], and Demons [50] are
accurate but suffer from high computational costs. Very recently,
Thorley et al. [51] proposed a fast iterative method based on the
Nesterov accelerated ADMM for diffeomorphic routine, but its
performance is limited for cross-domain problems. Building on
the spatial transformer network [52], the last few years have
seen a boom in image spatial transformer methods based on
deep learning. These include VoxelMorph [53], SYMNet [54],
B-spline Network [55] and VR-Net [56], just to name a few.
To achieve diffeomorphisms, most deep learning methods use
multiple squaring and scaling as a neural layer [53], [54], [55].
However, these methods are designed without considering dif-
ferences in intensity distributions.

E. Geometry Accuracy in Synthetic Data

The assessment of geometry accuracy in synthetic data serves
as a crucial evaluation metric, as highlighted by [57]. For in-
stance, the Dice similarity coefficient is commonly computed to
evaluate the accuracy of representing specific tissue classes or
structures such as bones, fat, muscle, air, and the overall body. It
has been observed that registration errors in synthetic data can
introduce blurring artifacts in high-contrast regions, leading to
inaccuracies in treatment localization, as noted by [58]. In certain
applications, such as subsequent segmentation tasks, achieving
structure correspondence becomes essential. Jiang et al. [59]
investigated the use of MRI-to-CT translation to enhance the
robustness of segmentation, while Kieselmann et al. [60] gen-
erated synthetic MRI data from CT scans to train segmentation
networks for reliable auto-segmentation algorithms of organs-
at-risk and radiation targets. Additionally, Zhang et al. [13]
explored the adaptation segmentation task for medical images,
emphasizing the importance of geometry accuracy in medical
image translation when applying a trained segmentation model
to fit images from a different domain by translating them to the
source domain. In Section IV of our work, we have demonstrated
the efficiency of our proposed method in this segmentation task.

III. METHOD

In this paper, we propose an image translation approach
such that an input image can be converted to an output im-
age while the domain gaps in both intensity distribution and
structure can be minimized. We define the test (source) data to
be translated as XS and the set of training (target) data with
labelled segmentation ground truth as XT . Our goal is to learn
a mapping from XS to XT , such that the element xS ∼ PXS

will be translated to xT ∼ PXT
which has the same underlying

structure and intensity distribution as in XT . Since the objective
of the intensity distribution translation is to overcome the domain
gap issue for subsequent analysis tasks such as segmentation,
the content of the images or the underlying clean part of the
images is what really matters and shall be kept unchanged.
However, arbitrarily maintaining the edges would lead to the
propagation of the structural gap. In this paper, we first obtain
the main structure u via a preprocessing step. Then, a spatial
transformation is used to get the forward and inverse deformation
fields (φ and φ−1) between the input and target images. After
that, we utilize φ to warp structure masks which are formed
by filling the structural images to get u(φ) which we re-obtain
the edges from to get the warped structure and feed into the
structure-to-image rendering generator G. Finally, the outputs
G(u(φ),xS(φ)) ofG are expected to have similar structures and
intensities to images in the target domain. The overall process
is shown in Fig. 4. Since the structures are deformed in the
spatial transformation block, we use the inverse deformation
field φ−1 to warp the segmentation outputs back to original
shape as the final segmentation output. An illustration of the
intermediate results is given in Fig. 5 for a better understanding
of the proposed method.

A. Pixel Clustering Map

We first compute a basic pixel clustering map u∗ for input
imagexusing the joint image reconstruction and pixel clustering
Potts model [61]. Then its edge sketchu is obtained. Meanwhile,
we combine the clustering map into binary masks. Then these
masks are given a Gaussian gradient and multiplied by their
corresponding source images xS and xT to get the composed
structure images IS and IT , which is shown in Fig. 6.

B. Spatial Transformation Block

In this section, we establish a spatial transformation block
which obtains a deformation to reduce the domain shift between
dominant structures in the datasets. We note that most related
methods only include a forward deformation estimation strategy.
However, an inverse deformation is crucial for our application
in image segmentation. If we perform an inverse computing by
switching source and target, the obtained inverse deformation
will not match the forward deformation well, thus, we propose
a spatial transformation block which learns the forward and
inverse deformation fields simultaneously.

After conducting the step mentioned in Section III-A, a pair
of the composed structure images IS and IT (the pair with
the maximum SSIM score) are obtained. Here, we propose an
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Fig. 4. An illustration of the SUA: First, the source and target images (x(i)
S and x

(i)
T ) are processed to compute the dominant structure of the input image. Then,

the obtained dominant structures uS
(i) and uT

(i) are used to compute the deformation field φ(i) and its inverse φ−1(i). The deformation field φ(i) is used to
warp the uS

(i), which is further processed by the generator G. The resultant image is fed to the trained segmentation model, whose output is warped back by the
inverse deformation field φ−1(i) to get the final segmentation result.

Fig. 5. Intermediate results produced by the pipeline. From left to right are target image xT , source image xS , the forward deformation field φ, the warped
top-structure, the rendered top-structure, the prediction results, the inverse deformation field φ−1, and the prediction results warped back to the original structure.

Fig. 6. Illustration of the spatial transformation procedure.

invertible spatial transformation to align them. Since we do so
by multiplying Gaussian masks with the original images, this
can be considered performing a transformation on the masks
rather than a cross-domain transformation. Computing a diffeo-
morphic deformation can be treated as modelling a dynamical
system [47], given by an ordinary differential equation (ODE):

∂φ/∂t = vt(φt), where φ0 = Id is the identity transformation
and vt indicates the velocity field at time t (∈ [0, 1]). To solve
the ODE, we use Euler integration, in which the forward defor-
mation field φ is calculated as the compositions of a series of
small deformations, defined as

φ =
(
Id +

vtN−1

N

)
◦ · · · ◦

(
Id +

vt1

N

)
◦
(
Id +

v0

N

)
. (1)

The backward deformation can be computed reversely as

φ−1 =
(
Id− v0

N

)
◦
(
Id− vt1

N

)
◦ · · · ◦

(
Id− vtN−1

N

)
. (2)

In the above equations, if the velocity fields vti , ∀i ∈
{0, . . ., N − 1} are sufficiently small whilst satisfying some
smoothness constraints, the resulting composition is a diffeo-
morphic deformation. In addition, note that the composition
between φ and φ−1 will give an approximate identity grid and
one can use φ−1 to warp an image back.
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Fig. 7. Visualisations of diffeomorphic forward and backward (inverse) de-
formations. The first and the last columns show the source and target image,
respectively. The second and the fourth columns show the forward and backward
deformation fields, respectively. Finally, the third and the fifth columns show the
Jacobian determinants of corresponding forward and backward deformations,
respectively.

Fig. 8. Architecture of the intensity distribution rendering network, whereDf

and De denotes the start and the end parts of the discriminator D.

To compute the velocity fields whilst satisfying these diffeo-
morphic constraints, we use the following model

min
v

{
1

2
‖ρ(v)‖2 + λ

2
‖∇nv‖2

}
, (3)

where ρ(v) = 〈∇IS ,v〉+ IS − IT . ∇n denotes the nth

order gradient, and here we use n = 3. For a scalar-
valued function f(x, y, z) in the continuous setting, ∇nf =[(

n
k1, k2, k3

)
∂2f

∂xk1∂yk2∂zk3

]T
, where ki = 0, . . ., n, i ∈ {1, 2, 3}

and k1 + k2 + k3 = n. Moreover,
(

n
k1, k2, k3

)
are known as the

multinomial coefficient which is computed by n!
k1!k2!k3!

. To solve
the model effectively, we use a multiscale ADMM algorithm
developed in [51]. An illustration of forward and inverse defor-
mations is shown in Fig. 7.

C. Intensity Distribution Rendering

An intensity distribution rendering network is used to render
the warped structures with the targeted intensity distribution.
As shown in Fig. 8, it is a paired image-to-image translation
network, including a “U-Net-like” [62] structure for translation
mapping, a discriminator for adversarial training, and a feature
alignment mechanism for loss computation. Mathematically, the
losses Ladv , L1 and Ls corresponding to the three components
are denoted as:

Ladv = EuT∼UT
[log(1−D(G(uT ,xS(φ)),uT ))]

Algorithm 1: Optimization Procedures.

+ E(xT ,uT )∼(XT ,UT )[logD(xT ,uT )], (4)

where uT ∼ UT represents the targeted structure, (xT ,uT ) ∼
(XT , UT ) represent the targeted image and structure pair and D
represents the discriminator of the mapping G, and φ represents
the deformation between xT and its closest xS (maximum
SSIM).

L1 = E(xT ,uT )∼(XT ,UT )‖G(uT ,xS(φ))− xT ‖1, (5)

where ‖ · ‖1 denotes the �1-norm. Then feature correlations are
given by Gram matrix Gr, where Gr(xT )

(l)
ij correspond to the

Gram matrix of lth layer of D with input xT and uT . It is
computed as follows:

Gr(xT )
(l)
ij = vec

[
F(xT )

(l)
i

]T
vec

[
F(xT )

(l)
j

]
, (6)

where F(xT )
(l)
i represents the lth layer of D’s feature maps,

the subscripts i and j denote the ith and jth channel, and vec(·)
denotes the vectorization operation.

Ls = E(xT ,uT )∼(XT ,UT )

3∑
l=1

‖Gr(G(uT ,xS(φ)))
(l)

−Gr(xT )
(l)‖F (7)

The full objective of the intensity distribution rendering network
is described as the following equation.

G∗, D∗ = argmin
G

max
D

[Ladv + λ1L1 + λ2Ls], (8)

where λ1 and λ2 are hyper-parameters that balance different
losses. The optimization procedures of the whole model are
summarized in Algorithm 1.
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D. Implementation

Network Architecture: The generator in our networks includes
15 residual 2D convolution blocks. Specifically, the first 8
blocks are encoder blocks, where each block contains a 4 × 4
convolution layer sequentially followed by a ReLU activation
function, an instance normalization layer and a dropout layer;
the rest are decoder blocks, where each block contains a 4 × 4
transposed convolution layer sequentially followed by a ReLU
function, an instance normalization layer and a dropout layer,
respectively. The discriminator in the proposed model contains
four convolution blocks and a fully connected layer, where these
convolution blocks include a 4 × 4 convolution layer (padding
equals to 1), an instance normalization layer and a Leaky-ReLU
function. The core code will be released after the acceptance of
our work.

Training Details: In intensity distribution rendering, we set
the balancing hyper-parameter λ1 = 1 and λ2 = 100 in (8) for
all the experiments. We apply the Adam [63] optimizer with
a learning rate of 0.0002, which decays to zero following a
linear principle from the 100th epoch to the 200th epoch in
all experiments. Moreover, the padding pixel number is 8, the
tolerance ratio is 0.001, the balance hyper-parameter is 5 and the
max-iteration is 50 in the spatial transformer of all experiments.
Additionally, we set the γ = 0.35 for the OCT and the cardiac
experiments, and γ = 0.55 for the MRI and CT experiments in
the Potts model.

IV. EXPERIMENTAL RESULTS

We conduct a comprehensive evaluation of the Structure-
Unbiased Adversarial (SUA) network across multiple domain
adaptation tasks in medical image segmentation. In retinal Op-
tical Coherence Tomography (OCT), we utilize the SINA and
ATLANTIS datasets to address structural and intensity distribu-
tion differences. Similarly, in MRI-to-CT domain transfer, we
leverage publicly available datasets to demonstrate the method’s
applicability to multi-modal imaging. Additionally, we assess
the adaptability of SUA to pathological conditions by transfer-
ring images from diseased (ACDC) to healthy (UKBB) subjects
in cardiac MRI. Through extensive experiments, we evaluate
both structure and intensity translation, employing various eval-
uation metrics and comparisons with state-of-the-art methods.
These experiments collectively showcase the effectiveness and
versatility of our SUA in addressing domain gaps in medical
image segmentation tasks.

A. Domain Translation on Retinal OCT

1) Datasets: We apply SUA on retinal OCT to transfer the
shape characteristics and intensity distribution of one OCT
dataset to another. The SINA1 and ATLANTIS datasets are
used. The SINA dataset contains 220 B-scans from 20 volumes
of eyes with drusen and geographic atrophy, collected using a
spectral domain-OCT imaging system from Bioptigen. Three
boundaries have been manually annotated, including boundary

1https://people.duke.edu/\,sf59/Chiu_IOVS_2011_dataset.htm

1: internal limiting membrane (ILM); boundary 2: between the
outer segments and the retinal pigment epithelium (OS/RPE);
and boundary 3: between Bruchs membrane and the choroid
(BM/Choroid). We use this dataset as the target T . The AT-
LANTIS dataset is a local dataset, containing 176 B-scans,
collected using a swept-source OCT machine. The same three
boundaries as SINA are annotated and used in this study. Since
the two datasets are collected from different machines under dif-
ferent protocols, there exist gaps in both structure and intensity
distributions, which makes the models trained from one dataset
perform poorly on the other.

2) Comparison With Prior Arts: The performance of the
image translation is evaluated in terms of both structure and
intensity distribution.

Evaluation on Structure Translation: The performance eval-
uation of the structure transfer is challenging. Ideally, it would
be evaluated by comparing the translated image with the cor-
responding image from the other machine. However, it is not
practical in image to identify the exact same region of the
object using different machines. Since the main objective of
the translation is to improve subsequent analysis, we evaluate
its performance using the segmentation results indirectly.

A segmentation network based on the U-Net architecture is
first trained using the SINA dataset (training/target dataset). The
proposed generative model is trained to translate ATLANTIS
images such that the structure characteristics and intensity dis-
tributions of the translated images are similar to those in SINA.
The trained U-Net segmentation model is then applied on the
translated data (test/source dataset) to detect the three bound-
aries, which are subsequently used to evaluate the performance
of the image-to-image translation model.

The mean intersection-over-union (mIoU ) [65], the mean
S φ rensen–Dice coefficient (Dice), the accuracy (Acc), the
sensitivity (Sen), the specificity (Spe), and the false discovery
rate (FDR) are used as evaluation metrics.

To evaluate the effectiveness of the proposed SUA network,
we compare it with state-of-the-art translation methods includ-
ing CycleGAN [35], MUNIT [37], DualGAN [64], StarGAN
v2 [43] NAGAN [13], SCCGAN [39] and DDIB [46] as well
as the spatial transformation methods VoxelMorph [53], Vox-
elMorph with mutual information loss (VoxelMorph+MI) and
VR-Net [56]. For all SOTA methods and the test tool U-net, we
use the same hyper-parameters described in the open-sourced
codes or the papers from the original authors. In the experiments,
we train these GANs in a similar way to learn the translation
from ATLANTIS to SINA. The transferred ATLANTIS is then
fed into the U-Net segmentation network to segment the three
boundaries for comparison with the manual ground truth. For the
spatial transformation methods, the deformation is computed to
warp the image for segmentation. The output of the segmentation
is warped back by the inverse deformation for comparison.
Table I shows the comparison between the proposed method and
other methods, where values are shown in the form of mean(std).
As shown from the results, the proposed SUA outperforms the
state-of-the-art performance on all metrics.

Fig. 9 shows some sample results for visual comparison. As
can be observed, Cycle-GAN indiscriminately transfers both
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TABLE I
DISTRIBUTION AND SEGMENTATION EVALUATION OF RETINAL OCT

Fig. 9. Results of translated images from ATLANTIS to SINA. The first and second rows show translated images of two input images by different methods. The
third and fourth rows show the corresponding segmentation results.

intensity distribution and structure, resulting in a SINA-shaped
segmentation input and prediction. Since the prediction is in
a different domain than the input, we cannot forcibly apply
SINA-to-ATLANTIS of Cycle-GAN and there is no displace-
ment information as we obtained in our method. Therefore,
the raw SINA-shaped prediction shows very low performance.
This phenomenon is more obvious on MUNIT and StarGAN v2

which transfer the structure even more effectively. Respectively,
our method achieves a gain of 0.251 onmIoU and 0.189 onDice
compared to Cycle-GAN, and a gain of 0.525 on mIoU and
0.391 on Dice compared to MUNIT. Similarly to the NAGAN,
SCCGAN has the ability to preserve structures through a struc-
ture consistency constraint based on squared-loss Mutual Infor-
mation. There are two reasons why DualGAN does not achieve
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desired segmentation performance. First, they cannot differen-
tiate the difference between structure and intensity distribution.
Second, they suffer from the domain gap in shape which we
tackled using the spatial transformation block. This happens
to NAGAN and SCCGAN as well, and our method achieves
a gain of 0.358 and 0.067 on mIoU , 0.313 and 0.065 on Dice
compared to DualGAN and NAGAN respectively. The superior
performance of our proposed method over MUNIT stems from a
particular drawback in MUNIT. Specifically, MUNIT translates
the style by switching the style features in the latent space and
doesn’t have spatial movement predictions, which struggles to
track changes in structure and shape during the translation pro-
cess. As a result, the altered structure and shape do not align well
with the original image, leading to diminished segmentation per-
formance. Similar to MUNIT, DDIB struggles to track changes
in structure and shape during the translation process, which
decrease the segmentation results by lacking correspondence.
In comparison with NAGAN, the SCCGAN is designed to keep
the structure and shape unchanged during the translation, which
maintains the structure gap to the target dataset. Therefore, it
does face challenges in reducing the domain gaps related to the
structure. These remaining structural domain gaps subsequently
lead to reduced segmentation performance. Moreover, spatial
transformation methods, i.e., Voxelmorph and VR-Net, do not
achieve acceptable results because they ignore the difference in
texture and intensity distribution.

Evaluation on Intensity Distribution Translation: We also
evaluate the performance of intensity distribution translation
from the SINA to ATLANTIS. Two metrics Bhattacharyya
distance DBhat [66] and correlation Corr [67] are computed
to evaluate the performance of intensity distribution transfer
referring to [13]. To calculate the two metrics, we calculate
the intensity histograms of both transferred images and target
images:

Corr(H1, H2) =

∑
I(H1(I)− H̄1)(H2(I)− H̄2)√∑

I(H1(I)− H̄1)2
∑

I(H2(I)− H̄2)2
,

(9)

DBhat(H1, H2) =

√
1− 1√

H̄1H̄2N2

∑
I

√
H1(I)H2(I),

(10)

where H1 and H2 denote the normalized histograms. I denotes
background regions, H̄k = 1

N

∑
J Hk(J) represents the mean

value of histogram Hk, k = 1, 2, and N denotes the total num-
ber of histogram bins.

As shown in Fig. 9 and Table I, most GAN based methods
could achieve good results in translating the intensity distribu-
tions. However, MUNIT cannot preserve the content information
as it tends to change the structure to fit the target distribu-
tion, which seriously reduces the segmentation performance.
CycleGAN achieves balanced results in shifting the intensities
and keeping structural information, however, some unnatural
shapes and structures appear. Although spatial transformation
methods reduce the shape gap between source and target data,

TABLE II
RESULTS OF ABLATION STUDY

the structure differences still persist to a certain extent and the
intensity difference cannot be conquered.

3) Ablation Study and Discussion: In order to justify each
component of the proposed method, we conduct the following
ablation studies. The following methods are compared: (1) The
baseline approach is the direct use of the model trained on SINA
without any other processing, denoted as w/o Translation. (2)
The proposed diffeomorphic spatial transformation method to
warp ATLANTIS images to SINA, denoted as DiffR. (3) The
proposed DiffR method with clustering map u∗, denoted as
DiffR + u∗. (4) A combination of spatial transformation and
structure-preserving GAN to the DiffR spatial transformation
results, denoted as Transformation + GAN. (5) The combination
in (4) with u∗, denoted as Transformation + GAN + u∗. (6)
Our prpoposed method without the maximum SSIM mechanism.
(7) The intensity translation module of the proposed method is
replaced by the Fourier-transform-based method [40]. (8) Our
proposed method. The results show that all the components are
effective, as shown in Table II.

Here we find out the reason that a straightforward combination
of proposed spatial transformation method and the structure-
preserving GAN cannot work well. It is because that the texture
distortion caused by the spatial transformation is hard to be
removed by the structure-preserving translation GAN. Fig. 10
shows an example for visual comparison. As shown, if we
only employ a spatial transformation method, we are unable
to obtain an accurate deformation. However, there are still many
distortions in the translated results, such as the line-shape noise
patterns. Such distortions could lower the segmentation perfor-
mance and can hardly be eased by intensity distribution trans-
lation methods. For example, source image warped by DiffR
Attention and transferred intensity distributions still remains
distorted. Because it is hard to separate these distortions from
structure, the network might consider them as structures rather
than intensity distribution. Additionally, Fig. 11 shows that the
Fourier-transform-based method can not be effectively applied
to replace the intensity translation module. Although Fourier-
transform-based methods demonstrate notable proficiency in
efficiently translating images, these methods are susceptible to
introducing distortions in the translated results due to defor-
mations. This susceptibility arises from the sensitivity of high-
frequency components to deformations. Particularly, during the
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Fig. 10. Illustrations of results and deformations in the ablation study. It shows the reasons (distortions caused by deformations) why a straight forward combination
of spatial transformation model and structure-preserving GAN will not work well.

Fig. 11. Illustrating distortion artifacts caused by the Fourier-transform-based
style translation. (a) shows a warped source image as input to the intensity trans-
lation module; (b) is the target style we want (a) to transfer to; (c) demonstrates
high-frequency sensitivity to deformations, whereas (d) showcases the retention
of distortions, as highlighted in the red boxes.

intensity translation phase, where inputs comprise deformed
source images and basic structure contours, the high-frequency
components of these deformed source images often contain
distortions resulting from the deformations.

B. Domain Translation From MRI to CT

1) Datasets: To further justify the generalization of the
proposed method, we also apply SUA on multi-modal data. In
the second set of experiments, we apply it on domain transfer
from MRI to CT. Two publicly available datasets2 [68], [69]
with manually labelled segmentation ground truth are used.
The first dataset is a MRI dataset that includes three regions
in the chest, i.e., cardiac, lung, and liver. The second dataset is
a CT dataset, taken from the same patients as the MRI dataset
and containing the same organs. We use the MRI dataset as the
source,XS , and the CT dataset as target,XT . In this experiment,
we only use the common areas of 2D images to evaluate the
effectiveness of the proposed method for its generalization.

Cross modality translation often faces more comprehensive
gaps in structure and intensity distribution. In some situations,
the boundaries in the images can be fundamentally different
because of the difference in imaging principles. For example,
we observe gradually changing brightness from the center to the
top/bottom in MRI, whereas, a close to uniform distribution is
observed in CT. In addition, shape is more flat in MRI than CT.

2) Comparison With Prior Arts: Similar to retinal OCT ex-
periments, we train the segmentation network on CT and use
it to infer transferred MRI images. Similarly, the segmentation
outputs are warped back and evaluated against the original MRI

2https://learn2reg.grand-challenge.org

ground truth. We compare the proposed method with the same
set of methods as in Section IV-A.

Evaluation of Structure Transfer: We first evaluate the struc-
ture transfer from MRI to CT. As shown in the Table III and
Fig. 12, our proposed SUA method outperforms the state-of-the-
art methods on mIoU , Dice, Acc, Spe and FDR. Structures
of cardiac, lung and liver are transferred successfully compared
with the VR-Net, Voxelmorph and DualGAN methods. While
our inverse deformation can maintain the original shapes com-
pare with diffusion based translation model DDIB and transla-
tion GANs such StarGAN v2, MUNIT, NAGAN, SCCGAN and
CycleGAN.

Evaluation of Intensity Distribution Transfer: Table III com-
pares the proposed method with other methods in transferring
intensity distribution. Fig. 12 gives some examples for visual
comparison. As shown in the results, translation GANs could
also obtain good results on translating the intensity distribu-
tions similar to the OCT experiment. Unsurprisingly, MUNIT
achieves the best distribution results but obtains bad results in
segmentation. This is reasonable since MUNIT changes the se-
mantic information and leads to misaligned masks. Furthermore,
we can see that the translated images by our method not only
reach good results in distribution alignment but also capture
the structure information by obtaining the inverse deformations.
Although spatial transformation methods reduce the shape gap
between source and target datasets, the structure difference still
remains to a certain extent and the intensity difference cannot
be conquered.

C. Translation Between Data From Healthy and Unhealthy
Subjects

1) Datasets: Next, we examine how our method performs
when translating between data from healthy subjects and that
from unhealthy subjects. For this we use MRI images from
both the ACDC [70] and the Biobank (UKBB) [71] datasets.
For ACDC, it is composed of 100 patients with three types
of pathologies: infarction, dilated cardiomyopathy, and hyper-
trophic cardiomyopathy. For UKBB, we randomly select 100
healthy subjects. The aim is to transfer the style of images in
ACDC to that in UKBB, so that the segmentation model trained
from healthy patients also works for pathological cases. For each
subject in both datasets, we select images at the end-diastolic
(ED) frames for experiments.

2) Translation From Unhealthy Subjects Data to Healthy
Subjects Data: Similar to the retinal OCT experiments and the
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TABLE III
DISTRIBUTION AND SEGMENTATION EVALUATION OF CHEST MRI TO CT

Fig. 12. Results of translated images in the MRI to CT experiment.

MRI-to-CT experiments, we train a segmentation model on
normal images in UKBB which is then used to segment the
diseased images in ACDC dataset after image translation. We
then evaluate the performance by comparing warped segmen-
tation outputs and original ACDC ground truth. Similarly, the
proposed method is compared with the same set of methods as
in Section IV-A.

Evaluation of Structure Translation: Table IV shows the
performance of different models measured by mIoU , Dice,
Acc, Spe and FDR. Compared with the VR-Net, Voxelmorph,
and DualGAN methods, our SUA model obtains better results.
Additionally, Fig. 13 shows that the transferred structures are
on par with that by VoxelMorph, VoxelMorph(MI), and VR-net.
Furthermore, the inverse deformation obtained by our method
can maintain the shape information of the source dataset, thus
outperforming diffusion based translation model DDIB and
translation GANs, such as CycleGAN, NAGAN, SCCGAN and
StarGAN v2.

Evaluation of Intensity Distribution Transfer: Similarly, we
evaluate translation on intensity distributions. Table IV shows

the comparison between the proposed method and other meth-
ods. Specifically, translation GANs have advantages in the
translation of intensity distribution, which has been observed
similarly in previous experiments. Not unexpectedly, the same
issues occur in MUNIT: though it gives the best distribution
results visually, it loses the semantic information of the input
source samples. In contrast, the translated images by our method
not only produce good results in aligning distributions, but also
capture the structure information by using the inverse deforma-
tions. Spatial transformation methods, such as VoxelMorph with
mutual information loss, reduce the structure gaps to a certain
extent, but the intensity difference still could not be decreased.

3) Translation From Healthy Subjects Data to Unhealthy
Subjects Data: To further understand the relationship between
normal and abnormal image characteristics, we conducted an
additional experiment in the reverse direction. This involved
translating images representative of a healthy state into the
distribution typically associated with disease images. The re-
sults, as depicted in the subsequent Table V and Fig. 14, the
gaps between normal cases and abnormal cases are reduced by
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TABLE IV
DISTRIBUTION AND SEGMENTATION EVALUATION OF CARDIAC IMAGES

Fig. 13. Results of translated images in the ACDC to UKBB experiment.

TABLE V
TRANSLATION MEASUREMENT ON REVERSE DIRECTION

Fig. 14. Health to disease translation.

translation. Specifically, the diseases in these cardiac samples
mainly manifest as morphological and structural abnormalities
in images, rather than the presence of additional lesions, which
makes generating images from healthy to disease not out of
reach.

V. DISCUSSION

A. Quantitative Investigation

We have rigorously evaluated the proposed method across
six different datasets of varied modalities, extensive experi-
mental results have also proved the superiority of the proposed
method in MRI-CT translation and pathology-normal cardiac
MRI translation. In these two tasks, large structural gaps can
be clearly observed. These results from the six datasets clearly
prove that our method is a general approach and can effec-
tively translate images between various domains and reduce the
shifts to improve segmentation with large and small structural
gaps. As quantification of the extents of structure gap could
be important, we employ Mutual Information loss. This metric
is adept at assessing structural differences and has been effec-
tively used to measure structural consistency post-translation in
SCCGAN [39]. A lower Mutual Information loss between two
datasets indicates a greater structural divergence. Our compu-
tations reveal that the initial Mutual Information loss between
OCT datasets is substantial but is significantly mitigated by our
translation method, as evidenced in the translated results shown
in Table VI.
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TABLE VI
THE MUTUAL INFORMATION (MEDIAN) BETWEEN SOURCE AND TARGET DATASETS (SOURCE & TARGET) AND BETWEEN SOURCE AND TRANSLATED SOURCE

DATASETS (SOURCE & REUSLTS)

Fig. 15. Illustrating the translation traceability. Left: a semantic figure showing how the heart is deformed and translated from MRI to CT. Right: a screenshot
of the online demo given at https://traceable-translation.github.io) showing the spatial connection before and after translation.

Fig. 16. The first image is one of source images, which is an abnormal image
on ES state; the second image is a target image which is normal and is on ED
state.

We noticed that large variances appear in the results of the
third dataset, e.g, Ours and CycleGAN’s. This is because this
cardiac dataset is a very difficult one and these challenges come
from data collected at different phases and translation from
pathological to healthy subjects. Specifically, the source images
in this dataset are from abnormal subjects at the end systolic
(ES) phase, whilst the target images are from normal subjects
at the end diastolic (ED) phase. As shown in Fig. 16 left, the
left ventricular cavity in the source image is very small, and
the right ventricular cavity even disappears. In contrast, they are
completely normal in the target image. These issues make it chal-
lenging to estimate the deformation between them, which led to
large variances in our final results. This high variance problem
can be migrated by either using large-sized datasets (like our
first OCT dataset) or datasets that have smaller structure gaps
(like our second MR/CT dataset). We highlight that although
our method produced higher variances in this cardiac dataset,
our method still achieved the best overall results compared to
other baseline methods. The superiority of our method can be
confirmed by its higher means in Table IV.

B. Structure Correspondence

The significance of structure correspondence is often over-
looked in existing image-to-image methods. They usually fo-
cus on whether the generated image are similar to the target
distribution rather than whether the structure of the generated
image is related to that of the source image [39]. Furthermore,
preserving the structure without addressing the geometry gaps
between source and target images is inadequate for fulfilling the
translation requirements in medical image tasks. For example,
the geometry difference between the imaging in MRI to CT
translation would affect the treatment course [72]. It is also
mentioned in [73] that establishing correspondences can help
to monitor disease progression, estimate motion in radiotherapy
planning. These imply that structure correspondence is essential
for treatment courses.

Our proposed method possesses an ability to synthesize large
quantities of paired data by employing structure unbiased image-
to-image translation, while achieving pixel-level structure corre-
spondence. This breakthrough paves a way for the development
of an interactive translation method, enabling accurate transla-
tion of images with point-to-point correspondences to effectively
capture structural changes. To exemplify this advancement, we
presented Fig. 15 to show the spatial correspondences between
source and translated images. An online demo was also devel-
oped and given at https://traceable-translation.github.io.

VI. CONCLUSION

Image to image translation is an essential task in machine
learning, especially for tasks across different modalities. In
this paper, we propose to reduce the domain shifts in both
structure and intensity distributions. A novel SUA network
which contains a structure extractor, a spatial transformation
module, and an intensity-rendering module, is proposed in this
paper. Our experimental results have shown that SUA is able
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to transfer both the structure and intensity distributions and
improve segmentation results. Although our method achieves
state-of-the-art performance, it has a limitation over the domain
gaps introduced by very small objects or lesions as they are often
too small to be detected by the dominant structure extractor,
which would be future work.
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