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Purpose: To systematically investigate the influence of various data consistency lay-
ers and regularization networks with respect to variations in the training and test data 
domain, for sensitivity- encoded accelerated parallel MR image reconstruction.
Theory and Methods: Magnetic resonance (MR) image reconstruction is formulated 
as a learned unrolled optimization scheme with a down- up network as regularization 
and varying data consistency layers. The proposed networks are compared to other 
state- of- the- art approaches on the publicly available fastMRI knee and neuro dataset 
and tested for stability across different training configurations regarding anatomy 
and number of training samples.
Results: Data consistency layers and expressive regularization networks, such as the 
proposed down- up networks, form the cornerstone for robust MR image reconstruc-
tion. Physics- based reconstruction networks outperform post- processing methods 
substantially for R = 4 in all cases and for R = 8 when the training and test data are 
aligned. At R = 8, aligning training and test data is more important than architectural 
choices.
Conclusion: In this work, we study how dataset sizes affect single- anatomy and 
cross- anatomy training of neural networks for MRI reconstruction. The study pro-
vides insights into the robustness, properties, and acceleration limits of state- of- 
the- art networks, and our proposed down- up networks. These key insights provide 
essential aspects to successfully translate learning- based MRI reconstruction to 
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1 |  INTRODUCTION

Parallel imaging (PI)1- 3 forms the foundation of acceler-
ated data acquisition in magnetic resonance imaging (MRI), 
which is tremendously time- consuming. In the last decade, 
PI combined with compressed sensing (CS) techniques have 
resulted in substantial improvements in acquisition speed and 
image quality.4- 9 Although PI- CS can achieve state- of- the- art 
performance, designing effective regularization schemes and 
tuning of hyper- parameters are not trivial. Starting in 2016, 

deep learning algorithms have become extremely popular and 
effective tools in data- driven learning of inverse problems 
and have enabled progress beyond the limitations of CS.

Deep learning for image reconstruction is an enormously 
fast- growing field, which makes it challenging to keep an 
overview over the different approaches. For details on the 
developments of deep learning for MRI reconstruction, we 
refer the interested reader to survey papers.10- 13 In this work, 
we only focus on reviewing relevant approaches for 2D MRI 
reconstruction. Table 1 gives a compact overview of already 

clinical practice, where we are confronted with limited datasets and various imaged 
anatomies.

K E Y W O R D S

data consistency, deep learning, domain shift, down- up networks, fastMRI, iterative image 
reconstruction, parallel imaging

T A B L E  1  Overview of related work for 2D MRI reconstruction

Related work Acquisition
Coil 
comb Application Data consistency Network Adversarial

Aggarwal et al14 MC SENSE Neuro Proximal mapping CNN No

Akçakaya et al15 MC RSS Neuro, cardiac ACL CNN No

Duan et al16 MC SENSE MSK Variable splitting CNN No

Eo et al17 SC – Neuro Cross- domain CNN No

Hammernik et al18 MC SENSE MSK Gradient descent VN No

Hyun et al19 SC – Neuro k- space correction UNET No

Johnson et al20 MC SENSE MSK Gradient descent UNET No

Knoll et al21 SC/MC RSS MSK, neuro No UNET No

Lee et al22 SC/MC RSS Neuro No UNET No

Mardani et al23 SC – MSK, abdominal k- space projection CNN Yes

Pezotti et al24 MC RSS MSK Gradient descent CS- NET No

Putzky et al25 SC – MSK Gradient descent RIM No

Qin et al26 SC – Cardiac Proximal mapping RNN No

Quan et al27 SC – MSK, neuro Loss penalty WNET Yes

Ran et al28 SC – MSK, neuro Cross- domain CNN No

Schlemper et al29 SC – Cardiac Proximal mapping CNN No

Seitzer et al30 SC – Cardiac Proximal mapping CNN Yes

Sriram et al31 MC RSS MSK k- space UNET No

Wang et al32 MC RSS MSK Proximal mapping RNN No

Yang et al33 SC – Neuro ADMM CTA No

Yang et al34 SC – Neuro Loss penalty UNET Yes

Zhang et al35 MC RSS Neuro Loss penalty CNN Yes

Zhu et al36 SC/MC SENSE Neuro No FC + CNN No

Acquisition: MC, multi- coil; SC, single- coil. Coil comb: RSS, root- sum- of- squares; SENSE, sensitivity- weighted coil combination2. Data consistency: ACL, 
auto- calibration lines, no training database required; ADMM, Alternating Direction Method of Multipliers. Network: CNN, convolutional neural network; CTA, 
combination of convolutions and trainable activations; FC, fully connected layer; RNN, recurrent neural Network; VN, variational network.
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published approaches.14- 36 The different approaches can be 
distinguished based on (1) the acquisition type, that is, single- 
coil or multi- coil reconstruction, (2) the type of coil combina-
tion used in multi- coil approaches, (3) the type of application, 
(4) realization of consistency to measured k- space data, (5) 
network architecture, and (6) the use of adversarial training 
strategies in addition to commonly used similarity measures, 
for example, mean squared error (MSE). Several things can be 
noted: A majority of approaches work on single- coil reconstruc-
tion; however, the standard approach for MR acquisition is PI. 
Within the multi- coil approaches, different types of coil com-
binations, that is, root- sum- of- squares (RSS) and sensitivity- 
weighted combination occur, similar to a preference towards 
sensitivity encoding (SENSE)2 or generalized autocalibrating 
partially parallel acquisitions (GRAPPA).3 Data consistency 
(DC) is achieved in several ways. Examples here are learned 
unrolled optimization schemes, image- domain networks with 
or without k- space correction, or image- domain networks, 
where a loss penalty on the k- space data is added only during 
training. While the majority of image- domain networks are 
based on UNET,37 iterative reconstruction approaches utilize 
different architectures such as convolutional neural networks 
(CNNs), UNET,37 or fields of experts (FoE) regularization38 
in variational networks (VNs).18 All approaches in Table 1 ex-
cept15 rely on large training databases. Last, it can be noted 
that most architectures that use adversarial training use image- 
domain networks as generating networks and are deployed 
for a single- coil setting. Despite the tremendous volume of 
research, there remain several open questions in the field of 
learning MRI reconstruction.

It is still an open question how well neural networks gener-
alize to anatomical changes, and variations in training and test 
domain at a large scale. Learning- based approaches are often 
evaluated in dedicated research settings with small, homoge-
neous datasets and it is hard to determine if the proposed build-
ing blocks, consisting mainly of regularization networks and DC 
layers, are only effective in the proposed setting or generalize to 
variations in the data and experimental setups. However, pro-
posed generalization experiments in previous works have only 
focused on small datasets and dedicated research settings. Knoll 
et al39 studied the influence of differences in signal- to- noise ratio 
(SNR) on knee data. Johnson et  al20 showed the influence of 
training specific and joint networks for different anatomies of the 
musculoskeletal (MSK) system, including shoulder, hip, ankle, 
and knee images. A first instability analysis of neural networks 
for image reconstruction was studied in Antun et al.40 However, 
a different instability analysis was conducted for the selected ap-
proaches that were proposed for a single- coil or multi- coil set-
ting, and with or without DC layer. Furthermore, the approaches 
were tested on datasets that differed in levels of SNR. This makes 
it challenging to draw general conclusions.

The aim of this work is to bridge the gap of the aforemen-
tioned challenges that we have observed in deep learning for 
parallel MRI reconstruction. We study the influence of reg-
ularization networks, DC layers, and variations in the data, 
in a controlled experimental setup. To the best of our knowl-
edge, this is the first work that studies the effect of different 
training data configurations, including variations in anato-
mies and sample size, for neural network reconstructions at a 
large scale, using the publicly available fastMRI datasets with 
approximately 5400 training cases.21 We perform an exten-
sive evaluation of different networks with varying DC layers 
and regularization networks. We propose a down- up network 
(DUNET) as the regularization network, and we show the 
superior performance of the proposed DUNET compared 
to other state- of- the- art approaches for varying training data 
scenarios. These scenarios include variations in anatomy, 
using knee and neuro data, and variations in the number of 
training samples. Hence, the systematic evaluation allows us 
to experimentally investigate the robustness and limits of DC 
layers and regularization networks with respect to different 
acceleration factors. All experiments are performed on the 
fastMRI multi- coil knee and neuro dataset,21 where a fully 
sampled sensitivity- combined reconstruction, with an ex-
tended set of coil sensitivity maps,41 is used as ground truth. 
To reproduce our findings, we provide all our source code 
along with the data processing scripts for the fastMRI data-
sets online.

2 |  THEORY

Accelerated MRI reconstruction aims at recovering a recon-
struction x ∈ ℂ

Nx from a set of undersampled k- space meas-
urements y ∈ ℂ

Ny which are corrupted by additive Gaussian 
noise n ∈ ℂ

Ny following

This inverse problem involves a linear forward opera-
tor A:ℂNx → ℂ

Ny modeling the MR physics. Here, Nx and 
Ny define the dimensions of the reconstruction x and the 
k- space data y according to the underlying multi- coil or 
single- coil problem. We investigate a linear multi- coil op-
erator A:ℂNx → ℂ

Ny
2 using an extended set of M coil sen-

sitivity maps to overcome field of view (FoV) issues,41 
reconstructing x = [x1, …, xM]. The dimensions are given as 
Nx = NFE ⋅ NPE ⋅ M and Ny = NFE ⋅ NPE ⋅ Q, where NFE and 
NPE denote the number of frequency encoding (FE) and phase 
encoding (PE) lines, respectively, and Q is the number of re-
ceive coils. The final result is obtained by a RSS combination 
of the reconstruction along the sensitivity map dimension.

(1)y = Ax + n.



1862 |   HAMMERNIK Et Al.

2.1 | Learning unrolled optimization

An approximate solution x̂ ∈ ℂ
Nx to the inverse problem in 

Equation (1) is typically obtained by minimizing a regular-
ized problem of form

where λ balances between the regularization term ℛ[x] and 
the DC term �[Ax, y] =

1

2
‖Ax − y‖2

2
. While ℛ[x] is fixed in 

classical CS approaches, we learn ℛ[x] from data. A solution 
is obtained by alternating optimization in ℛ and � for a fixed 
number of iterations T.11,14,16,29 We define the fixed unrolled 
algorithm for MRI reconstruction as

for 0 ≤  t < T (see Figure 1). First, we take a step along the 
direction of the negative gradient −∇xℛ, which is replaced 
by a regularization network −fθ with trainable parameters θ. 
Hence, the regularization network naturally learns the residual. 
The regularization network f�: ℂNx → ℂ

Nx has complex- valued 
input and output channels, represented as two- channel real- 
valued image, and the same network is applied separately to 
xm, m = 1, …, M. The DC layer is denoted by g. In the follow-
ing, we describe regularization networks and DC layers that we 
use in our work in more detail.

2.1.1 | Regularization networks

The regularization network fθ can be realized by any type 
of CNNs, or it can be motivated by variational methods.18 
Commonly used regularization networks are a 5- layer 
CNN,14,29 UNET21,37 or the fields- of- experts model.18,38 In 
this work, we introduce DUNETs that serve as an efficient 
alternative to the expressive UNETs.42

The DUNET as shown in Figure 1 first downsamples the 
image by convolutions with stride 2 and then performs analy-
sis on this coarser scale. Shifting the computation to a coarser 
scale is not only more memory efficient, but also does not 
lower the reconstruction quality at the original scale.42,43 The 
core of DUNET are the multiple down- up blocks (DUBs) ap-
plied in an iterative way. This structure allows for an efficient 
propagation of information at different scales.44 The outputs of 
the DUBs are concatenated and further analyzed by a residual 
convolution/activation block, followed by sub- pixel convolu-
tions, which perform superior in terms of expressiveness and 
computational efficiency over upsampling convolution.45

2.1.2 | Data consistency

The DC term allows us to consider the physics of MR acqui-
sition in the image reconstruction problem, and measures the 
similarity to the acquired k- space data. The DC term can be 
incorporated in the learning- based reconstruction procedure 
in several ways.

One possibility is to perform a gradient step18 related to 
the DC term �[Ax, y]

(2)x̂ ∈ arg min
x∈ℂNx

ℛ[x] + �𝒟[Ax, y]

(3)x
t+

1

2 = xt
− f�t (xt),

(4)xt+1
= g(xt+

1

2 , y, A)

F I G U R E  1  Structure of the architecture, including a regularization network and a data consistency (DC) layer. We present a novel down- up 
network (DUNET) as regularization network. The core of the DUNET are the down- up blocks (DUB), which are applied sequentially at a coarser 
scale rather than the original input. The outputs of the DUBs are concatenated and processed further with convolutions, activation functions 
and subpixel upsampling to get back to the original scale. Residual connections are added whenever possible. The convolution blocks (conv) 
additionally depict the kernel size, the number of input features and output features, and the stride if applicable
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where A* denotes the adjoint operator of A.
Instead of gradient descent (GD), DC can be modeled by 

the proximal mapping (PM)14,29

This is especially feasible if the PM is easy to compute and a 
closed- form solution exists. If no closed- form solution exists, or 
a solution is intractable to compute, as this is typically the case 
for parallel MRI involving coil sensitivity maps, the PM can 
be solved numerically using a conjugate gradient optimizer as 
presented in Ref. [14].

To avoid the extensive computations of the PM, Duan 
et  al16 proposed a variable splitting (VS) scheme. To re-
view VS, we first introduce the sensitivity- weighted multi- 
coil operator for the qth coil as Aq = MℱCq. The operator 
Cq:ℂNx → ℂ

Nx applies the qth pre- computed coil sensitivity 
map to x, for q = 1,  …,  Q. This is followed by a Fourier 
Transform (FT) ℱ:ℂNx → ℂ

Nx. The operator M:ℂNx → ℂ
Ny 

realizes the Cartesian sampling pattern and masks out k- 
space lines that where not acquired. VS divides the problem 
defined in Equation (6) in two sub- problems by using a coil- 
wise splitting variable zq ∈ ℂ

Nx

where α > 0 and β > 0 balance the influence of the soft con-
straints. Solving these sub- problems yields the following 
closed- form solution

Here, I denotes the identity matrix and * the adjoint operation.
All presented DC layers, that is, GD, PM, and VS, ensure 

soft DC to the measurement data y, representing image re-
construction networks. By setting λ = 0 in Equation (5), DC 
is omitted and we achieve a pure residual network performing 
a post- processing task.

3 |  METHODS

This section provides an overview of the used datasets 
and data processing as well as network setup and training. 
Specific details on the networks and data processing are 
given in the source code repository.

3.1 | fastMRI datasets

All our experiments were performed on the fastMRI knee 
and neuro dataset.21 Training was performed on the multi- 
coil training data, testing was performed on the multi- coil 
validation data. The number of training and testing samples 
are denoted by Ntrain and Ntest, respectively. The knee dataset 
consists of two different sequences:

• Coronal proton- density weighted with fat- saturation 
(PDFS): Ntrain = 489, Ntest = 99

• Coronal proton- density weighted without fat- saturation 
(PD): Ntrain = 484, Ntest = 100

The neuro dataset consists of four different sequences:

• Axial FLAIR (AXFLAIR): Ntrain = 344, Ntest = 107
• Axial T1 (AXT1): Ntrain = 498, Ntest = 169
• Axial T1 with contrast agent (AXT1POST): Ntrain = 949, 

Ntest = 287
• Axial T2 (AXT2): Ntrain = 2678, Ntest = 815

For details on the sequence parameters, we refer to the 
original publication.21

3.2 | Data processing

We defined the target as the sensitivity- weighted coil- combined 
image of the fully sampled data. We estimated two sets (M = 2) 
of sensitivity maps according to soft SENSE 41 to account for 
any field- of- view issues or other obstacles in the data. The 
number of auto- calibration lines (ACLs) needed for sensitiv-
ity map estimation varied according to the acceleration factor 
and was set to 30 ACLs for R = 4 and 15 ACLs for R = 8 for 
the training and validation set. These numbers were motivated 
by examining the number of given low frequencies in the test 
and challenge dataset. The data were normalized by a factor ob-
tained from the low frequency scans by taking the median value 
of the 20% largest magnitude values, to account for outliers.

We also make use of foreground masks to stabilize train-
ing. Foreground masks were extracted semi- automatically for 
the knee dataset,46 and by thresholding the RSS combination 
of the sensitivity maps for the neuro dataset.

(5)gGD(xt+
1

2 ) = x
t+

1

2 − �tA∗ (Ax
t+

1

2 − y),

(6)gPM(xt+
1

2 ) = arg min
x

1

2
‖x − x

t+
1

2 ‖2
2
+

�

2
‖Ax − y‖2

2
.

(7)

zt+1
q

= arg min
zq

�

2

Q�

q= 1

‖Mℱzq − yq‖2
2
+

�

2

Q�

q= 1

‖zq − Cqx
t+

1

2 ‖2
2

(8)

gvs(x
t+

1

2 ) = arg min
x

�

2

Q�

q= 1

‖zt+1
q

− Cqx‖2
2
+

�

2
‖x − x

t+
1

2 ‖2
2
,

(9)zt+1

q
=ℱ

−1

((
�M∗M+�I

)−1
(
�ℱCqx

t+
1

2 +�M∗yq

))

(10)

gvs(x
t+

1

2 )=

(
�I+�

Q∑

q= 1

C∗

q
Cq

)−1 (
�x

t+
1

2 +�

Q∑

q= 1

C∗

q
zt+1

q

)
.
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3.3 | Training setup

All networks were trained using a combined �1 and structural 
similarity index (SSIM)47,48 content loss ℒ between the ref-
erence xref and the reconstruction xrec = xT

where ⊙ is the pixel wise product and |·| denotes the RSS re-
construction to combine the individual output channels [x1, x2]. 
This loss formulation also involves a binary foreground mask 
m to focus the network training on the image content and not 
on the background. The parameter �

�1
= 10−5 is chosen em-

pirically to match the scale of the two losses and is motivated 
by the fastMRI challenge requirements. Although we aim for 
maximizing the SSIM scores in testing, a combined loss is ben-
eficial to stabilize training.24,47

We used the ADAM optimizer49 with learning rate 0.0001, 
default momentum (0.9,0.999) and learning rate scheduling 
every 15 epochs by γlr = 0.5. We use a progressive training 
scheme, starting with 2 cascades in the first 2 epochs and 
increasing the number of cascades with every epoch, up to a 
total number of T = 10. We trained all network architectures 
for 60 epochs. To overcome the huge graphics processing unit 
(GPU) memory consumption during training, we randomly 
extracted patches of size 96 in FE direction.29 Training was 
performed using an NVIDIA Quadro RTX 6000 (24 GB) and 
took approximately 12 days for a single network. Testing was 
performed using an NVIDIA Titan Xp (12 GB). We report 
average reconstruction times of the network architectures 
along with the number of trainable network parameters in 
Supporting Information Table S1.

We trained the networks on all contrasts and the acceler-
ation factors R = 4 and R = 8 simultaneously as we want to 
examine how the different architectures respond to a general-
ized training setup. This allows us to have a general network 
that can be applied to any anatomy and acceleration factor. 
Hence, we did not aim for the best scores on a benchmark, 
although we would expect improvements with fine- tuning the 
networks for specific conditions.

3.4 | Experimental setup

We systematically investigate how state- of- the art architec-
tures and the proposed DUNETs with varying DC layers per-
form on variations in training data. We study the domain shift 
problem for image reconstruction experimentally, that is, we 
study how the different architectures can deal if training and 
test data do not come from the same data cohort.

3.4.1 | Network architectures

The DUNETs have Nf  =  64 base features, resulting in a 
total number of 3 372 985 network parameters. We imple-
ment three different DC layers, that is, GD, PM, and VS. We 
compared the DUNETs to three state- of- the- art architectures. 
First, we omitted DC and implemented a residual UNET 
based on21 with Nf = 64 base features and kernel size 3, cor-
responding to 3 357 827 parameters. Second, we investigated 
MoDL,14 which has a 5- layer CNN with Nf = 64 base features 
and 3 × 3 filter kernels as regularization network, and PM for 
DC. The total number of network parameters was 113 155. 
We omitted batch normalization as this resulted in instable 
trainings. Third, we investigated VNs, which can be inter-
preted as unrolled GD scheme with a regularization network 
that derives from the fields- of- experts model. Following,18 
we learned Nf = 48 filter kernels of size 11 × 11 and trainable 
linear activation functions with 31 nodes. The filter kernels 
are projected on the zero- mean and ℓ2 norm- ball constraint 
after each parameter update. The total number of parameters 
is 131 051. The parameters are not shared over the cascades, 
following the original publication.

The regularization parameter λ was not trained as we ex-
perienced instabilities during training the PM- DUNET and 
MoDL.14 For these two architectures, we initialized λ = 10, 
otherwise λ  =  1. For the VS networks, we experimented 
with different settings for the parameters α and β, and we set 
α = β = 0.1 empirically for our experiments.

3.4.2 | Training data

Training and evaluation was performed on the fastMRI multi- 
coil knee and neuro training and validation set, respectively. 
We performed following base experiments:

• knee 100: Training on 100% knee data (Ntrain = 973)
• neuro: Training on 100% neuro data (Ntrain = 4412)

To study the influence on the number of samples and joint 
training of knee and neuro data, we performed an ablation 
study as follows:

• knee 50: Training with 50% knee data (Ntrain = 487)
• knee 25: Training with 25% knee data (Ntrain = 244)
• joint 100: Joint knee and neuro training with 18% of all 

data, samples equal 100% of knee data (Ntrain = 968)
• joint 50: Joint knee and neuro training with 9% of all data, 

samples equal 50% of knee data (Ntrain = 486)
• joint 25: Joint knee and neuro training with 4.5% of all 

data, samples equal 25% of knee data (Ntrain = 240)

(11)
ℒ(xrec, xref)=1−SSIM(m⊙ |xrec|, m⊙ |xref|)
+𝛾

𝓁1
𝓁1(m⊙ |xrec|, m⊙ |xref|),
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• joint uni 100: Joint knee and neuro training with uniform 
distribution of contrasts, samples equal 100% of knee data 
(Ntrain = 974)

• joint uni 50: Joint knee and neuro training with uniform 
distribution of contrasts, samples equal 50% of knee data 
(Ntrain = 484)

• joint uni 25: Joint knee and neuro training with uniform 
distribution of contrasts, samples equal 25% of knee data 
(Ntrain = 243)

We would like to note here that we performed two differ-
ent sets of joint knee and neuro training, one with uniform 
and one with non- uniform distribution of the contrasts. As 
pointed out in Section 3.1, the number of samples differ for 
the knee and neuro set, and also for the different contrasts 
in the neuro dataset. While the uniform datasets contain the 
same number of samples from each available contrast, the 
non- uniform datasets contain only a fraction of samples such 
that the distribution of contrasts in the reduced dataset cor-
responds to the distribution of contrasts in the full dataset, 
which is a common scenario in clinical practice.

For quantitative evaluation, we report the SSIM. All ex-
periments are visualized as ranked lists50 with descending 
SSIM, where the bars are colored regarding the training data-
set and the quantitative values are printed next to the bars. 
Qualitative examples are displayed for the best and worst per-
forming training dataset for the individual models. Difference 
maps are provided as supporting information.

4 |  RESULTS

We plotted ranked lists for networks evaluated on knee and 
neuro data. The performance of networks trained only on 
knee and neuro data is depicted in Figure 2 (knee, R = 4), 
Figure 3 (knee, R = 8), Figure 4 (neuro, R = 4), and Figure 
5 (neuro, R = 8). Results for trainings on different fractions 
of knee and joint training data are illustrated in Supporting 
Information Figure S1 (knee, R = 4), Supporting Information 
Figure S2 (knee, R = 8), Supporting Information Figure S3 

(neuro, R = 4), and Supporting Information Figure S4 (neuro, 
R = 8). For an acceleration factor of R = 4, we observe that all 
post- processing UNETs perform inferior than the worst per-
forming reconstruction network, independent of the number 
and type of training samples. This effect is more prominent on 
the neuro data compared to the knee data. For the neuro data 
and R = 4, the best post- processing UNET, trained on neuro 
data, achieves an SSIM an 0.9291 and the worst reconstruc-
tion method, VS- DUNET trained on knee 25 data, achieves 
an SSIM of 0.9460. For the knee data and R = 4, the best 
post- processing UNET, trained on knee 100 data, achieves an 
SSIM an 0.9142 and the worst reconstruction method, MoDL 
trained on neuro data, achieves an SSIM of 0.9153. For an ac-
celeration factor of R = 8, the post- processing UNET trained 
and evaluated on the same data outperforms some image re-
construction networks which were trained and evaluated on 
different data.

The ranked lists also show a substantial performance gain 
at accelerations (4/8) in terms of SSIM of the best performing 
reconstruction DUNET compared to state- of- the- art recon-
struction (0.0109/0.0284) and compared to post- processing 
methods (0.0376/0.0644) for neuro data and a performance 
gain to state- of- the- art reconstruction (0.0079/0.0266) and 
post- processing methods (0.0233/0.0415) for knee data. We 
observe larger performance gain for neuro data compared to 
knee data, especially for R = 8.

Figure 6 shows results for an example coronal PDw scan 
with fat saturation and R = 4. The top row shows the best per-
forming network, corresponding to knee 100 data. We already 
observe an anatomy change of the UNET in the interchon-
dylar notch which is correctly depicted in all reconstruction 
networks. The DUNETs have the least artifacts and appear 
most homogenous compared to VN and MoDL, supported 
by the difference image in Supporting Information Figure S5. 
The bottom row shows the worst performing networks. For 
MoDL, VN, and UNET, networks trained only with neuro 
data perform worst. This is different for the DUNETs where 
the joint 25 dataset led to the worst results.

Results for a selected coronal PDw scan and R = 8 are 
illustrated in Figure 7, along with difference images in 

F I G U R E  2  Ranked list for the fastMRI 
knee dataset at R = 4 trained with knee and 
neuro datasets. All reconstruction networks 
perform superior than the post- processing 
networks. GD- DUNET trained on the knee 
dataset performs best. PM- DUNET trained 
only on the neuro dataset performs better 
than the state- of- the- art methods
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Supporting Information Figure S6. The UNET result ap-
pears blurry, however, it has less artifacts than MoDL and 
VN which have difficulties to reconstruct images at this high 
acceleration factor. The DUNETs are able to reconstruct the 
images with high quality when trained with knee data. The 
VN results between the best and worst performing network 
do not differ greatly. The UNET reconstructions appear ar-
tificial when trained on neuro data. All DUNETs show arti-
facts when trained on neuro data, however, the anatomy itself 
does not change.

Figure 8 shows example results for an axial T1w scan and 
R = 4. The VN shows the most artifacts of the reconstruction 

networks. The drop in image quality between different data-
sets is lowest for MoDL and PM- DUNET, supported by the 
difference images in Supporting Information Figure S7. GD- 
DUNET and VS- DUNET show severe artifacts in the recon-
structions when trained on knee 25 data. The post- processing 
UNET stays close to the zero filling solution when trained 
with the wrong data.

Results for a selected axial T1w post contrast scan for 
R = 8 is illustrated in Figure 9 along with the difference im-
ages in Supporting Information Figure S8. Reconstruction 
DUNETs trained with neuro data show the best image quality 
at this high acceleration factor. UNET cannot reconstruct this 

F I G U R E  3  Ranked list for the fastMRI 
knee dataset at R = 8 trained with knee and 
neuro datasets. PM- DUNET trained on the 
knee dataset performs best. PM- DUNET 
trained only on the neuro dataset performs 
better than all state- of- the- art methods. 
Post- processing UNET trained on knee 
data performs superior than VN and MoDL 
trained only on the neuro dataset

F I G U R E  4  Ranked list for the fastMRI 
neuro dataset at R = 4 trained with knee and 
neuro datasets. All reconstruction networks 
perform superior than the post- processing 
networks. PM- DUNET trained on the neuro 
dataset performs best

F I G U R E  5  Ranked list for the fastMRI 
neuro dataset at R=8 trained with knee and 
neuro datasets. PM- DUNET trained only on 
the knee dataset cannot compete with other 
state- of- the- art approaches trained on neuro 
data. Post- processing UNET trained on only 
neuro data performs superior than many 
networks containing knee data only. All 
networks trained on knee data fail for this 
dataset and acceleration factor.
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F I G U R E  6  Coronal PDw with fat saturation, R = 4 (file1001188.h5, slice 21): The first column shows the target (top) and zero filling 
reconstruction (bottom). Columns 2- 7 show the reconstruction results for the best performing training dataset (top) and worst performing training 
dataset (bottom). Note that the anatomy changes in the intercondylar notch for the post- processing UNET. DUNET with different DC layers 
perform best for all cases. MoDL shows the most performance decrease when trained on neuro data

F I G U R E  7  Coronal PDw, R = 8 (file1000432.h5, slice 20): The first column shows the target (top) and zero filling reconstruction 
(bottom). Columns 2- 7 show the reconstruction results for the best performing training dataset (top) and worst performing training dataset (bottom). 
Both MoDL and VN fail for this high acceleration factor, while the DUNET with different DC layers are able to reconstruct the images. However, 
when DUNETs are trained with neuro data, the artifacts cannot be fully removed. Note the great change in anatomy for the post- processing UNET 
when trained with neuro data

F I G U R E  8  Axial T1w, R = 4 (file_brain_AXT1PRE_203_6000649.h5, slice 2): The first column shows the target (top) and zero 
filling reconstruction (bottom). Columns 2- 7 show the reconstruction results for the best performing training dataset (top) and worst performing 
training dataset (bottom). The post- processing UNET yields blurry results while the VN contains remaining artifacts. MoDL is less sharp than the 
reconstruction DUNETs. However, when trained with knee 25 data, GD- DUNET, VS- DUNET, and VN show severe artifacts while PM- DUNET 
reconstructs a reasonable result. The UNET stays similar to the zero filling solution when trained with joint 25 data
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example. MoDL and VN show severe artifacts at this acceler-
ation factor. When trained with wrong data, the shape of the 
ventricles changes in all reconstruction DUNETs.

5 |  DISCUSSION

In this work, we investigate the performance and limits of 
deep neural networks with respect to different design param-
eters, including regularization networks, DC layers, and data 
variations in a controlled, experimental setup. Specifically, 
we compare three state- of- the architectures, namely UNET21 
(no DC), MoDL14 (5- layer CNN, PM as DC), and VN18 (fields 
of experts model, GD as DC) to our proposed DUNETs with 
GD, PM, and VS as DC. We deploy a challenging setup, 
where we train on all contrasts and acceleration factors si-
multaneously to study the robustness of all networks. This 
stands in contrast to tremendous amount of research that is 
conducted to improve the accuracy of deep neural networks 
on benchmarks,24,31,46,51 and to overcome limitations of CS 
approaches, for a specific anatomy or acceleration factor. 
Our evaluation simulates a very common scenario in medical 
imaging where the source and type of images and accelera-
tion factors might be unknown, or only limited ground truth 
data, but diverse test data might be available.

Up to now, the robustness of neural networks to training 
data has not been studied in literature, although this is a cru-
cial part for a successful clinical translation of MRI recon-
struction. Recent work focused on the robustness of sampling 
trajectories,52 the robustness to noise levels and image con-
trast,39 the effect of diverse MSK anatomies,20 or performed 
instability analysis of neural networks with respect to image 
perturbations.40 However, a drawback of these approaches is 
that the size of the dataset is limited, and datasets are homo-
geneous. Hence, the robustness of these approaches to large, 
inhomogeneous datasets is unknown.

Variations in DC

We first discuss the impact of different DC layers, with an 
expressive DUNET as regularization network. The results 
depict that the differences between DC layers for accelera-
tion factor R = 4 are minor. We observe that the PM- DUNET 
performs most stable over different training datasets, inde-
pendent of the number and type of training samples, espe-
cially at R = 8. For knee data and R = 4, PM- DUNET trained 
on neuro data even outperforms the best reported state- of- 
the- art method. The implicit DC step in the PM allows the 
network to use a larger regularization parameter λ, resulting 
in stronger DC. A GD layer would require a smaller stepsize, 
hence, more iterations to impose the same λ. However, com-
paring DC layers with respect to unrolled iterations is out of 
scope of this paper and was studied previously in Ref. 14. 
Indeed, our results show that GD- DUNET and VS- DUNET 
are more sensitive to the type and amount of training data. 
VS- DUNET in general performs worse than GD- DUNET, 
which stands in contrast to the results reported in Ref. 16. 
This can be explained by the inhomogeneous dataset which 
makes it more challenging to tune the parameters α and β.

Variations in regularization networks

Interestingly, the behavior of DC layers cannot be directly 
transferred to networks with a less expressive regulariza-
tion network deployed in VN and MoDL. While MoDL 
performs superior than VN on the neuro dataset, MoDL 
performs inferior than VN on the knee dataset, especially 
for the fat saturated knee data. In our study, MoDL is 
more sensitive to the content of the training dataset. We 
believe that this is due to the small CNN regularization 
and a strong PM DC, as this setup cannot capture the in-
homogeneity between acceleration factors, SNR levels and 

F I G U R E  9  Axial T1w post contrast, R = 8 (file_brain_AXT1POST_200_6002237.h5, slice 1): The first column shows the target 
(top) and zero filling reconstruction (bottom). Columns 2- 7 show the reconstruction results for the best performing training dataset (top) and worst 
performing training dataset (bottom). The DUNETs with varying DC show the best results when trained with neuro data. However, if they are 
trained on knee 25 data, even the ventricles disappear and instead an artificial structure resembling a knee appears
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anatomies. This indicates that expressive regularization 
networks such as the DUNETs are able to compensate for 
inhomogeneities in the data.

Importance of DC

The ranked list visualizations show that all networks with DC 
perform superior than the UNET without DC for R = 4, inde-
pendent of type and amount of training data. It is impressive 
that VN and MoDL only have 4% of parameters compared to 
UNET without DC, but they outperform UNET substantially 
for R = 4. For R = 8, UNET achieves superior quantitative 
results compared to VN and MoDL when trained on mis-
matched anatomy. However, we observe changes in anatomy 
for the UNET, as shown in Figure 7. These findings indicated 
that modeling the acquisition physics in the DC is more im-
portant than a large amount of training data, for successful 
learning in MRI reconstruction.

Robustness to variations in data

Our results indicate that domain shift is less of an issue at 
R = 4, and more general training data settings can be used to 
achieve decent reconstruction quality. For R = 8, the increase 
in dataset size tend to help but blindly increasing the dataset is 
not enough to account for the large domain shift. This becomes 
clear when examining the results for DUNET trained with knee 
25 data in Figure 9. We observe a structure in the brain that 
resembles more a knee structure than brain ventricles, and we 
suspect overfitting to the small knee dataset. Hence, including 
aligned data for training and testing is more helpful at R = 8, 
even if the dataset is small in size. Additionally, the influence 
of DC is limited for high acceleration factors as less informa-
tion is available in k- space. This rises the concern if structures 
are invented by the networks if the acceleration factor is pushed 
too far. Hence, both theoretical studies and radiologists’ evalu-
ations are required to estimate the limits of acceleration.

Radiologists’ evaluation are also required to assess image 
quality. For training the networks, we often use global, quan-
titative measures, that is, MSE and SSIM, which represent 
the human perceptual system poorly. These measures cannot 
account for important local features such as subtle patholo-
gies, and often result in blurry images.47,51 However, train-
ing on different loss functions, including adversarial losses 
and unsupervised training, is out of scope of this paper. 
Furthermore, we did not investigate transfer learning39,53 or 
fine- tuning on individual contrasts and acceleration factors in 
this study, which can further improve image quality.

Our work provides first insights into the robustness of neu-
ral networks for MRI reconstruction from an experimental 

perspective, where we cover a large- scale evaluation with re-
spect to variations in training data, regularization networks, 
and DC layers. There are also other sources of variation that 
are not covered in our experiments, including variations in 
unrolled iterations,14 number of features, loss functions,24 and 
the influence of optimizers in training.24 Furthermore, it still 
remains an open question how robust networks are to vari-
ations in SNR, field strength, scanner types, and hardware 
from different vendors, which have to be investigated in fu-
ture work.

In the present work, we focused on static 2D imaging, 
but the basics of DC and regularization networks can be 
directly translated to higher- dimensional image reconstruc-
tion, for example, dynamic imaging. However, the presented 
DC and regularization networks might not be sufficient to 
exploit complex temporal dynamics. Recent works focused, 
for example, on improving the regularization by exploiting 
spatiotemporal redundancies in X- f domain,54 or combin-
ing MoDL with a SmooThness regularization on manifolds 
(SToRM) prior for dynamic imaging.55 We believe that ad-
ditionally integrating advanced DC schemes, for example, 
motion- corrected DC,56 or combining the classic DC term 
with temporal models57 will be key ingredients to further im-
prove dynamic reconstruction with deep learning.

6 |  CONCLUSION

Large- scale studies are indispensable to assess the application 
potential of neural networks in clinical workflow, where we 
have to deal with both limited and inhomogeneous datasets. 
In our work, we experimentally validate hypotheses about ac-
celeration limits, properties, and the robustness of neural net-
works to sources of variation in DC, regularization networks 
and training data. Our findings underpin the importance of 
DC layers, and suggest that PM14 together with an expres-
sive regularization network, that is, the proposed DUNET, 
leads to the most stable results over a wide range of training 
scenarios. For low acceleration factors, general and robust 
networks can be learned that do not depend substantially on 
the type and amount of training data. For high acceleration 
factors, the results are impressive only if train and test do-
main are aligned. Although we get the impression that neural 
networks add more details to the reconstruction, we should 
be aware that they cannot recover high- frequency informa-
tion that has not been captured in the acquisition process.
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the Supporting Information section.

FIGURE S1 Ranked list for the fastMRI knee dataset at R 
= 4 trained with different configurations of knee and joint 
knee/neuro data. All reconstruction networks perform supe-
rior than the post- processing networks. GD- DUNET trained 
on the knee 100 dataset performs best
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FIGURE S2 Ranked list for the fastMRI knee dataset at R = 
8 trained with differentt different configurations of knee and 
joint knee/neuro data. PM- DUNET trained on the knee 100 
dataset performs best. Joint training with a low number of 
datasets, i.e., joint 25 and joint uni 25, drops the performance 
of MoDL more compared to VN. MoDL outperforms VN for 
trainings with only knee data
FIGURE S3 Ranked list for the fastMRI neuro dataset at R = 
4 trained with different configurations of knee and joint knee/
neuro data. All reconstruction networks perform superior than 
the post- processing networks. UNET trained with uniformly 
distributed knee and neuro data (joint uni 100) performs bet-
ter than the network with non- uniformely distributed knee and 
neuro data. The type and amount of training data is less critical 
for reconstruction networks at this acceleration
FIGURE S4 Ranked list for the fastMRI neuro dataset at 
R = 8 trained with different configurations of knee and joint 
knee/neuro data. PM- DUNET trained only on the knee data-
set cannot compete with other state- of- the- art approaches 
containing neuro data. All networks trained only on knee data 
fail for this dataset and acceleration factor
FIGURE S5 Difference images (×5) to Figure 6 for coronal 
PDw with fat saturation, R = 4 (file1001188.h5, slice 21). 
Columns 1- 6 show the difference to the target for the best 
performing training dataset (top) and worst performing train-
ing dataset (bottom). DUNETs with varying DC layers per-
form slightly better than VN and MoDL when trained with 
knee data. The performance decrease in MoDL when trained 
with neuro data is most obvious
FIGURE S6 Difference images (×5) to Figure 7 for coronal 
PDw, R = 8 (file1000432.h5, slice 20). Columns 1- 6 show 
the difference to the target for the best performing training 
dataset (top) and worst performing training dataset (bottom). 
MoDL and VN fail for this high acceleration factor. DUNETs 
with varying DC outperform the other state- of- the- art 

approaches substantially in all cases. The overall difference 
for the post- processing UNET is surprising, when trained on 
knee data
FIGURE S7 Difference images (×5) to Figure 8 for axial 
T1w, R = 8 (file_brain_AXT1PRE_203_6000649.h5, slice 
2). Columns 1- 6 show the difference to the target for the 
best performing training dataset (top) and worst performing 
training dataset (bottom). The post- processing UNET has the 
worst reconstruction error. All DUNETs outperform the other 
reconstruction approaches when trained on neuro data. When 
trained with the wrong data, PM- DUNET yields the best re-
sults for this contrast and acceleration factor
FIGURE S8 Difference images (×5) to Figure 9 for axial T1w 
post contrast, R = 8 (file_brain_AXT1POST_200_6002237.
h5, slice 1). Columns 1- 6 show the difference to the target for 
the best performing training dataset (top) and worst perform-
ing training dataset (bottom). The post- processing UNET has 
the worst reconstruction error. All DUNETs outperform the 
other reconstruction approaches when trained on neuro data. 
When trained with the wrong data, PM- DUNET yields the 
best results for this contrast and acceleration factor
TABLE S1 Number of parameters and reconstruction times 
averaged over 20 knee slices for the presented network ar-
chitectures. The reconstruction times are measured using an 
NVIDIA Titan Xp (12 GB) for a fastMRI knee dataset of size 
640 × 368 acquired with 15 coils21
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