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Abstract: Total variation (TV) is a powerful regularization method that has been widely
applied in different imaging applications, but is difficult to apply to diffuse optical tomography
(DOT) image reconstruction (inverse problem) due to unstructured discretization of complex
geometries, non-linearity of the data fitting and regularization terms, and non-differentiability
of the regularization term. We develop several approaches to overcome these difficulties by:
i) defining discrete differential operators for TV regularization using both finite element and
graph representations; ii) developing an optimization algorithm based on the alternating direction
method of multipliers (ADMM) for the non-differentiable and non-linear minimization problem;
iii) investigating isotropic and anisotropic variants of TV regularization, and comparing their
finite element (FEM)- and graph-based implementations. These approaches are evaluated on
experiments on simulated data and real data acquired from a tissue phantom. Our results show
that both FEM and graph-based TV regularization is able to accurately reconstruct both sparse
and non-sparse distributions without the over-smoothing effect of Tikhonov regularization and the
over-sparsifying effect of L1 regularization. The graph representation was found to out-perform
the FEM method for low-resolution meshes, and the FEM method was found to be more accurate
for high-resolution meshes.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Diffuse optical tomography (DOT) is an important non-invasive imaging technique whose major
applications include diagnosing breast cancer [1–3], imaging small animals for the study of
disease and analyzing brain function in functional neuroimaging [4–7]. In DOT, near-infrared
light (spectral range of 650-900 nm) is injected into the object through optical fibers placed on
the surface of the object. The transmitted light is then collected using optical detectors, forming
a series of boundary measurements, each of which corresponds to the signal received by a single
detector during illumination by a single source. Image reconstruction algorithms are then used
to recover the internal distribution of the underlying optical properties of the object from the
boundary measurements.

Due to the limited availability of boundary measurements and diffusive nature of near-infrared
light propagation, image reconstruction in DOT is an underdetermined, ill-posed and non-
linear inverse problem. Regularization is often used to constrain the inverse problem to yield
physiologically and anatomically plausible solutions, resulting in the following minimization
problem with respect to the optical properties µ

µ∗ = arg min
µ

{
1
2
‖ΦM − F (µ) ‖22 + λR (µ)

}
, (1)
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where ΦM represents the boundary measurements acquired from the optical detectors, F is the
non-linear operator induced from the forward model [8], R is a general regularization term, and
λ is a weight that determines the extent to which regularization will be imposed on the solution
µ∗. The quadratic Tikhonov-type regularization is widely used. However, it promotes smooth
solutions and thereby smears sharp features embedded in the image [9]. Regularizations based on
the L1-norm of the solution have been also extensively studied [10–12], as they impose a sparsity
constraint on the solution, enabling the recovery of sharp edges of objects in reconstructed
images. Eq. (1) with either regularization mentioned results in a convex optimization problem,
where highly efficient algorithms [13] are available. Recently, the more general Lp regularization
(0 < p < 1) that promotes sparsity into the resulting image [14], has been employed for DOT
image reconstruction [15, 16]. However, Lp regularization is nonconvex and therefore difficult to
optimize.
Regularizations involving the L1 or Lp-norm of the solution are used under the assumption

that the optical properties (representing the image) to be reconstructed are spatially sparse.
These regularizations tend to oversparsify the distribution of the optical properties when such an
assumption does not hold [13], for example, in the case of multiple activations or complex injuries
in the brain, where the features of interest are not spatially localized and the optical properties
relative to the background are therefore non-sparse [7]. In order to be able to reconstruct images
in which edges are preserved and features are not spatially sparse, a different approach is required.
Total variation (TV) regularization, which uses the L1-norm of the gradient of the solution as
a regularizing term (the detailed forms will be given in Section 2.1 and 2.2), can be used to
overcome the limitations. The gradient operator can transform the solution µ∗ to a sparse space
where non-zero values only occur at sharp features. As such, TV can perform better than the
pure sparsity preserving regularizations at preserving edges of objects in the images that are
not sparse. Further, gradient is a highpass operator, which imposes smoothness to the solution.
This improves the conditioning of the minimization problem (Eq. (1)), thus enabling a robust
numerical solution. Due to these advantages, TV has been adapted from applications in imaging
processing [17–19] to various medical image reconstruction problems, including photoacoustic
tomography (PAT) [20], bioluminescence tomography (BLT) [21], fluorescence tomography
(FT) [22], as well as DOT [23–25].

In most TV-associated imaging problems, the minimization problem is carried out on a
Cartesian grid where each element represents a pixel (voxel in three dimensional (3D)) in the
image [26]. In this case, the differential operators resulting fromminimizing the TV regularization,
such as gradient, divergence, Laplacian and curvature, are discretized straightforwardly using the
finite difference method (FDM) [26]. In DOT, it is however non-trivial to represent the complex
geometry (i.e. the multi-layer head used in our experiment) using a Cartesian grid and the FDM
is not always practical. Two representations are often employed to model complex geometries:
finite element and graph representations. In the former, the object geometry is represented by
a polygon/polyhedron, over which a series of disjoint triangles (tetrahedra in 3D) are usually
generated. In the latter, the object geometry is represented by an unstructured graph, defined by
vertices, edges and weights. Such a graph is normally constructed by exploring neighborhood
relationships between vertices. For each representation, there is a systematic discretization
scheme (finite element discretization or graph discretization) for the differential operators, which
can be readily applied to the minimization of TV-associated problems. We note that although TV
regularization has previously been studied in DOT [23–25], none of these studies have provided
detailed information about the discretization schemes they used. The performance of different
discretization schemes for TV regularization in DOT has not been systematically investigated.

Theminimization of aTV-associated problemcan be non-trivial due to the non-linearity and non-
differentiability of the TV regularization term. In image processing, many efficient optimization
algorithms have been developed for this task, including iteratively reweighed least squares [27],
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primal dual [28], split Bregman [29], and fast iterative shrinkage-thresholding algorithm
(FISTA) [30, 31]. Recently, alternating direction method of multipliers (ADMM) [18, 26, 32, 33]
has become increasingly popular. The elegance of ADMM lies in decomposition of the original
minimization problem into several simple subproblems, each of which either has a closed-form
solution or can be iteratively solved with efficient numerical methods. However, since ADMM-
based methods have been implemented mainly for Cartesian grids using a forward-backward
FDM [34] and it is not straightforward to generalize them to solve the inverse problem on an
unstructured domain. Moreover, the non-linearity of the data fitting term in Eq. (1) further
complicates the DOT reconstruction problem, making the minimization process required to solve
Eq. (1) difficult.
In this paper, we address these limitations and develop TV regularization approaches for the

inverse problem in DOT. More specifically, we make the following three distinct contributions:
(1) We introduce finite element and graph representations to discretize the TV regularization
term in DOT reconstruction enabling the minimization of the inverse problem associated with TV
regularization to be carried out on unstructured domains. To the best of our knowledge, this is the
first time that finite element-based discretization methods have been provided in detail for DOT
image reconstruction with TV regularization. Additionally, we are not aware of any previous
work that attempts to formulate the TV-regularized inverse problem using a graph representation.
(2) We propose an efficient algorithm based on ADMM to minimize the TV-regularized inverse
problem. Our algorithm can handle geometries with unstructured grids, and also reduces the
computational difficulties arising from the non-differentiability and dual non-linearities in the
inverse problem. (3) We further investigate the isotropic and anisotropic variants of the TV
regularization, and compare their finite element- and graph-based implementations against
a baseline Tikhonov model, both qualitatively and quantitatively using extensive numerical
experiments.

1v

2v

3v

Fig. 1. Modeling a complex geometry using finite element (left) and graph (right) represen-
tations.

2. Discretizations using finite element and graph representations

In this section, we first show how an unstructured computational domain can be modelled
using finite element (FE) and graph representations. The definitions of TV regularizations
(anisotropic and isotropic versions) and corresponding discrete differential operators are then
given accordingly for each representation. In Fig. 1, we show a circle discretized with the two
representations. For the FE representation (left), the circle is divided by a series of elements joint
at different vertices. In the FE representation, we normally term a discrete geometry as a FE
mesh. Within the circle mesh, a triangle (representing one element) is highlighted comprising
three disjoint vertices. For the graph representation (right), the circle is simply discretized with a
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set of vertices and edges. In this representation there is no concept of ‘element’. Note that it is
easy to convert the FE representation to the graph representation. For example, the FE mesh
can be viewed as a graph if we consider only the vertices and edges in it. In this section, two
representations are introduced to model the unstructured computational domain of complex DOT
geometries.

2.1. Finite element-based discrete differential operators

We apply the Galerkin FE method to the computational domain in DOT [35], the first step of
which is to approximate a continuous function by a piecewise-polynomial function. Using the
FE representation, let us first discretize an unstructured two dimensional (2D) domain Ω by M
triangles jointed at N vertex nodes (e.g. Fig. 1 left). V = {Vk}Nk=1 denotes a finite number of N
nodes. Let ϑh be the 2D vector space of continuous piecewise-linear functions on the triangles in
the FE mesh. The continuous and piecewise-linear function U(x, y) : Ω→ R, approximating the
optical properties on Ω, can be written in the form of

U =
N∑
i=1

µiϕi . (2)

Here {ϕi}Ni=1, ϕi ∈ ϑh are linear basis functions defined as ϕj(Vi) = 1 if i = j and ϕj(Vi) = 0 if
i , j. µi : V → R is the value of optical property on each vertex in the FE mesh, i = 1, ..., N .

Eq. (2) means that the optical property value inside a triangle is associated with the optical
property values on all vertices in the mesh. Given three vertices of a triangle T , i.e. v1 = (x1, y1),
v2 = (x2, y2) and v3 = (x3, y3), there are three linear basis functions ϕi associated with the
vertices, which are respectively expressed as

ϕ1 (x, y) = a1x + b1y + c1

ϕ2 (x, y) = a2x + b2y + c2

ϕ3 (x, y) = a3x + b3y + c3

: Ω→ R, (3)

a1 = (y2 − y3) /(2AT ), b1 = (x3 − x2) /(2AT ), c1 = (x2y3 − x3y2) /(2AT ), a2 = (y3 − y1) /(2AT ),
b2 = (x1 − x3) /(2AT ), c2 = (x3y1 − x1y3) /(2AT ), a3 = (y1 − y2) /(2AT ), b3 = (x2 − x1) /(2AT )
and c3 = (x1y2 − x2y1) /(2AT ). (x, y) represents any point inside of the triangleT . AT denotes the
triangular area of T , which is computed as AT = |x1 (y2 − y3) + x2 (y3 − y1) + x3 (y1 − y2)| /2.

In FE, one starts from a continuous problem and approximates the solution with a piecewise-
polynomial function U. As such, we define the following anisotropic and isotropic TV
regularizations ∫

Ω

(
|∂xU | +

��∂yU
��)dxdy = ‖Dxµ‖1 +



Dyµ




1. (4)∫
Ω

√
(∂xU)2 +

(
∂yU

)2dxdy =
M∑
i=1

√
|(Dxµ)i |2 +

�� (Dyµ
)
i

��2. (5)

In Eq. (4) and Eq. (5), the continuous TV regularizations and their resulting discretized versions
are shown on the left-hand side and right-hand side, respectively. The two discrete versions
respectively are the anisotropic and isotropic definitions of TV regularization. ∂x and ∂y are
continuous partial derivatives along the x and y directions, respectively. Dx is a matrix of size
M × N which, when applied to µ gives the discrete partial derivative of µ along the x direction.
Dy is the derivative matrix along the y direction. Dxµ and Dyµ are therefore two vectors of size
M × 1, where M is the number of triangles in the mesh. We note that the main idea of FE is
to break down the calculation domain Ω onto the local elements individually. Afterwards, the
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derived local matrices are assembled element by element to enable the final computation. Eq.
(4) and Eq. (5) can be proved by expressing the partial derivatives ∂xU and ∂yU in terms of a
basis. To illustrate this idea we prove the first term of Eq. (4):

∫
Ω

|∂xU |dxdy =
M∑
i=1

∫
Ti

|∂xU | dxdy =
M∑
i=1

∫
Ti

|
N∑
j=1

µj∂xϕj |dxdy

=

M∑
i=1

ATi

��ai,1µi,1 + ai,2µi,2 + ai,3µi,3
��

=

M∑
i=1
|(Dxµ)i | = ‖Dxµ‖1,

(6)

where ATi denotes the area of triangle Ti and {i, 1}, {i, 2}, {i, 3} in
��ai,1µi,1 + ai,2µi,2 + ai,3µi,3

��
represent the indices of the vertices of the i-th triangle. As

��ai,1µi,1 + ai,2µi,2 + ai,3µi,3
�� is a linear

combination, we can thus construct the discrete derivative matrix Dx with the following steps:

• Initialize all-zeros matrix Dx of size M × N .

• Loop over M triangles; for each triangle i, compute the coefficients a1, a2 and a3 using the
coordinates of the three vertices and fill in the three columns in the i-th row of matrix Dx

corresponding to the position of the three vertices in the node sequence.

The discrete derivative matrix Dy can be obtained in a similar way. Note that Dx and Dy

are sparse matrices as their most entries are zeros. With Dx and Dy defined, we can therefore
minimize the TV regularization (either anisotropic (Eq. (4)) or isotropic (Eq. (5)) version) with
the data fidelity term in (Eq. (1)) for DOT reconstruction over 2D unstructured geometries. The
corresponding 3D counterparts were also implemented in this paper, as shown in the experiments.

2.2. Graph-based discrete differential operators

In this section, we introduce discrete differential operators on graphs and from these derive the
TV regularization terms. First, we discretize an unstructured domain Ω by a weighted graph
G = (V, E,w) (e.g. Fig. 1 right). In the graph G, V = {Vk}Nk=1 denotes a finite set of N vertices,
and E ∈ V ×V is a finite set of weighted edges. We assume that G is an undirected simple graph
(no multiple edges) in this study. Let (i, j) ∈ E be an edge of E that connects the vertices i and j
in V . Let µi : V → R denote the value of the optical properties on i. The DOT reconstruction
problem then reduces to finding an optimal value of the optical properties for each of N vertices
in V .
The discrete differential operators are defined on the graph based on nonlocal methods

[18, 37, 38]. First, we define the nonlocal gradient operator ∇w acting on µi

∇wµi ,
(
µj − µi

) √
wi j : V → R. (7)

For vertex i ∈ V , ∇wµi is a vector with a length of N . The weight wi, j : V × V → R+
represents the similarity between nodes i and j, which is nonnegative and symmetric. The weight
function can be determined in many ways. In this study we choose to use the Euclidean distance
to define the weight function with wi, j = 1/di, j where di, j represents the distance between vertex
i and j. We note that an important difference between the FE gradient and the nonlocal gradient
is that the former has two directions in 2D or three directions in 3D, whilst the latter is a vector
of partial derivatives along all edges connected to the node.
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Given a vector function νi : V → R, the nonlocal divergence operator divw acting on νi is
given as

divw νi ,
N∑
j=1

(
νi j − νji

) √
wi j : V → R, (8)

where νi j is the jth index in the vector νi .
Based on Eq. (7) and Eq. (8), the nonlocal Laplace operator ∆w acting on µi is written as

∆wµi ,
1
2

divw (∇wµi) =
N∑
j=1

(
µj − µi

)
wi j : V → R, (9)

which is a linear operator also known as the graph Laplacian.
With these discrete differential operators defined on graph, we propose the anisotropic graph

TV regularization
N∑
i=1

N∑
j=1

�� (µj − µi ) √wi j

��, (10)

and the isotropic graph TV regularization

N∑
i=1

√√√ N∑
j=1

(
µj − µi

)2
wi j . (11)

In the above definitions, the constructed graph G is assumed to be fully connected, meaning that
each vertex is connected to all other vertices in G. In this case, the computational load for the
minimizations of Eq. (10) and Eq. (11) will be extremely heavy. Spectral graph theory [39,40]
or nearest neighbour [41, 42] techniques are typically employed to limit the number of edges that
are considered. For example, [39] and [40] use spectral approaches and the Nystrom extension
method [43] to efficiently calculate the eigen-decomposition of a dense graph Laplacian. In this
work, we build the graph by borrowing the positions of the vertices and the connectivity between
vertices in the finite element mesh as the vertices and edges in the graph. With this structure, the
graph is sparsified and only connected vertices for a given vertice are taken into consideration. In
such a case, regularizations (10) and (11) are respectively equivalent to

N∑
i=1

∑
j∈Ni

�� (µj − µi ) √wi j

��, (12)

and
N∑
i=1

√ ∑
j∈Ni

(
µj − µi

)2
wi j, (13)

whereNi = { j ∈ V : (i, j) ∈ E}. We note that the 2D and 3D implementations of these differential
operators are identical, making the resulting minimization processes of regularizations (12) and
(13) more straightforward than the FE implementation.

3. Minimization of TV-associated DOT inverse problems

Due to the non-linearity of the data fitting term and the non-differentiability of the TV regulariza-
tions, it is non-trivial to minimize a TV-regularized inverse problem. It is harder than minimizing
the standard L1-regularized inverse problem [13] because of the existence of the gradient operator.
In this section, we propose an efficient algorithm based on ADMM to address this, the idea of
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which is to first linearize the non-linear inverse problem and afterwards apply ADMM to the
resulting linearized problem. The whole process is then iterated until convergence. We note
that due to the use of the differential operators in Sections 2.1 and 2.2, the proposed algorithm
can handle complex geometries with unstructured grids, and also can ease the computational
difficulties arising from the non-differentiability and non-linearities in the inverse problem. We
now describe the details of this algorithm.

3.1. Linearization

Non-linear problems are technically difficult to tackle directly, so iterative linearization can be
used to convert a non-linear problem into a series of local linear problems. To do so, Taylor’s
series expansion is first used to approximate F(µ) in the fitting term of Eq. (1) as

F (µ) ≈ F
(
µk−1

)
+ Jk−1

(
µ − µk−1

)
, (14)

where Jk−1 denotes the Jacobian calculated from the (k − 1)th iteration and is defined as
∂F(µk−1)

/
∂(µk−1). The Jacobian in DOT is normally calculated using the adjoint method [44].

With this first order approximation, the non-linear problem Eq. (1) can be converted to

δµk = arg min
δµ

{
1
2
‖Jk−1δµ − δΦk−1‖22 + λR (δµ)

}
, (15)

which is an iterative linearized algorithm. δΦk−1 is the data-model mismatch which is given by
ΦM − F

(
µk−1) and δµk is the change in the optical property at the k-th iteration. With a proper

initialization µ0, a local minimizer to Eq. (1) can be found by iteratively updating this step. In Eq.
(4), Eq. (5), Eq. (12) and Eq. (13), we have defined the four types of TV regularizations using
different representations. We then apply them to R(δµ) in Eq. (15), resulting in the following
four linearized minimization problems in Table 1. However, it remains unclear how to optimize
the second term in Eq. (15). We address this using ADMM.

Table 1. Four TV-regularized minimization problems obtained by applying different TV
regularizations to Eq. (15). A-FETV, I-FETV, A-GTV and I-GTV respectively represent
anisotropic finite element total variation, isotropic finite element total variation, anisotropic
graph total variation and isotropic graph total variation.

Name Formulation

A-FETV δµ∗ = arg min
δµ

{ 1
2 ‖Jδµ − δΦ‖

2
2 + λ‖Dx (δµ)‖1 + λ



Dy (δµ)




1
}

I-FETV δµ∗ = arg min
δµ

{
1
2 ‖Jδµ − δΦ‖

2
2 + λ

M∑
i=1

√
|(Dx (δµ))i |2 +

�� (Dy (δµ)
)
i

��2}
A-GTV δµ∗ = arg min

δµ

{
1
2 ‖Jδµ − δΦ‖

2
2 + λ

N∑
i=1

∑
j∈Ni

���(δµ j − δµi
) √

wi j

���}
I-GTV δµ∗ = arg min

δµ

{
1
2 ‖Jδµ − δΦ‖

2
2 + λ

N∑
i=1

√ ∑
j∈Ni

(
δµ j − δµi

)2
wi j

}

3.2. ADMM implementations

In this section, we introduce ADMM in detail to minimize the A-FETV, I-FETV, A-GTV and
I-GTV problems. We begin with the ADMM implementation for A-FETV. Specifically, auxiliary
splitting vectors νx and νy are introduced to represent Dx(δµ) and Dy(δµ) respectively. Therefore
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the A-FETV problem is transformed into the following unconstrained optimization problem:

δµn, νnx , ν
n
y = arg min

δµ,νx,νy

{1
2
| |Jδµ − δΦ| |22 + λ | |νx | |1 + λ | |νy | |1

+
θ

2
| |νx − Dx(δµ) − bn−1

x | |22 +
θ

2
| |νy − Dy(δµ) − bn−1

y | |22},
(16)

where superscript n denotes the n-th ADMM iteration and bx and by are iterative parameters. In
order to find the minimizer of Eq. (16), an alternating optimization method is used where Eq.
(16) is split into several subproblems with respect to δµ, νx , νy , bx and by , each of which can be
solved separately.

First the iterative minimization approach requires us to solve the subproblem with respect to µ

δµn = arg min
δµ
{1
2
| |Jδµ − δΦ| |22 +

θ

2
| |νn−1

x − Dx(δµ) − bn−1
x | |22

+
θ

2
| |νn−1

y − Dy(δµ) − bn−1
y | |22},

(17)

which has the optimality condition((
JT J + θ

(
Dx

T Dx + Dy
T Dy

)))
δµn = JT δΦ − θDx

T
(
bn−1
x − νn−1

x

)
− θDy

T
(
bn−1
y − νn−1

y

)
.

(18)
As the inversion matrix of Eq. (18) has size N × N , in order to achieve high efficiency, we use

a gradient descent method to optimize the functional iteratively, in which the step size controls
how far the iterate moves along the gradient direction during the current iteration. Instead of
setting the step size manually, we use a backtracking line search to enforce convergence [31].
The next subproblem with respect to νx and νy is given as

νnx , ν
n
y = arg min

νx,νy

{λ | |νx | |1 + λ | |νy | |1 +
θ

2
| |νx − Dx(δµn) − bn−1

x | |22

+
θ

2
| |νy − Dy(δµn) − bn−1

y | |22}.
(19)

It should be noticed that, in A-FETV, there is no coupling between νx and νy . We can explicitly
compute the optimal value of νx and νy using the generalized shrinkage operators

νnx = max
(��Dx(δµn) + bn−1

x

�� − λ
θ
, 0

)
Dx(δµn) + bn−1

x��Dx(δµn) + bn−1
x

��
νny = max

(��Dy(δµn) + bn−1
y

�� − λ
θ
, 0

) Dy(δµn) + bn−1
y��Dy(δµn) + bn−1
y

��, (20)

with the convention that 0/0 = 0. The last one is to update the iterative parameters bx and by , as

bnx = bn−1
x + Dx(δµn) − νnx

bny = bn−1
y + Dy(δµn) − νny .

(21)

In I-FETV, using the same alternating optimization method, the original minimization problem
can be transformed as

δµn, νnx , ν
n
y = arg min

δµ,νx,νy

{1
2
| |Jδµ − δΦ| |22 + λ



(νx, νy )

2

+
θ

2
| |νx − Dx(δµ) − bn−1

x | |22 +
θ

2
| |νy − Dy(δµ) − bn−1

y | |22},
(22)
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where 

(νx, νy )

2 =

M∑
i=1

√
|(νx)i |2 +

�� (νy ) i ��2, (23)

and M is the number of finite elements. The first subproblem (L2 component) with respect to
δµ is the same as A-FETV. It should be noted that the νx and νy variables cannot be decoupled
as they were in A-FETV. In order to solve the subproblem with respect to νx and νy , we can
explicitly solve the minimization problem for

(
νnx , ν

n
y

)
, using a generalized shrinkage formula

νnx = max
(
sn − λ

θ
, 0

)
Dx(δµn) + bn−1

x

sn

νny = max
(
sn − λ

θ
, 0

) Dy(δµn) + bn−1
y

sn
,

(24)

with the convention that 0/0 = 0 and sn =
√��Dx(δµn) + bn−1

x

��2 + ��Dy(δµn) + bn−1
y

��2. The
iterative parameters bx and by are then updated as shown in A-FETV.
The ADMM-based algorithm for A-FETV and I-FETV is given in Algorithm 1, where

inner_loop is the maximum number of iterations for the ADMM-based algorithm.

Algorithm 1: ADMM-based algorithm for A-FETV and I-FETV.

INPUT: δΦ, J, y, inner_loop, ε1, regularization parameter θ > 0, λ > 0

Initialization: ν0
x = ν

0
y = b0

x = b0
y = 0

for n = 1 : inner_loop

1: Update µn using Eq. (17)

2: Update νnx and νny using Eq. (20) for A-FETV or Eq. (24) for I-FETV

3: Update bnx and bny using Eq. (21)

4: Stop if n = inner_loop or | |δµ
n−δµn−1 | |1
| |δµn−1 | |1

≤ ε1.

end for

RETURN δµk = δµn

We then propose ADMM-based algorithm to address the minimizations of A-GTV and I-GTV.
For A-GTV, we first introduce an auxiliary splitting vector variable ν, an iterative parameter b,
and a positive penalty parameter θ. The sizes of ν and b are both of N × N where N represents
the number of vertices. The A-GTV problem can be reformulated as the following unconstrained
optimization problem

δµn, νn = arg min
δµ,ν

{
1
2
‖Jδµ − δΦ‖22 + λ

N∑
i=1
‖νi ‖1 +

θ

2

N∑
i=1
‖νi − ∇w(δµi) − bn−1

i ‖22

}
. (25)

Since Eq. (25) is a multivariate minimization problem, we first solve the subproblem with respect
to δµ

δµn = arg min
δµ

{
1
2
‖Jδµ − δΦ‖22 +

θ

2

N∑
i=1
‖νn−1

i − ∇w(δµi) − bn−1
i ‖22

}
, (26)
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which gives the the optimality condition(
JT Jδµ − JT δΦ

)
i
+ θdivw

(
νn−1
i − ∇w(δµi) − bn−1

i

)
= 0, i = 1, ..., N . (27)

With the definition of the nonlocal divergence operator (Eq. (8)) and the nonlocal Laplace
operator (Eq. (9)), the point-wise equation system (Eq. (27)) can be equivalently converted to
the following matrix-based equation system

(JT J − θL)δµ = JT δΦ − θgn−1. (28)

L above is the graph Laplacian in matrix form, whose entries are

Li, j =


− ∑

j∈Ni

wi j if i = j

wi j otherwise
.

In Eq. (28), the vector gn−1 =
∑

j∈Ni

√
wi j

(
νn−1
ji − νn−1

i j

)
+

∑
j∈Ni

√
wi j

(
bn−1
ji − bn−1

i j

)
. Eq. (28) is

a system of linear equations. The solution δµn can be acquired iteratively using the same method
in A-FETV. Then we minimize the following subproblem with respect to ν

νn = arg min
ν

{
λ

N∑
i=1
‖νi ‖1 +

θ

2

N∑
i=1
‖νi − ∇w(δµni ) − bn−1

i ‖22

}
, (29)

which has an analytical solution, calculated from the generalized shrinkage formula

νnij = max
(���√wi j

(
δµnj − δµni

)
+ bn−1

i j

��� − λ
θ
, 0

) √wi j

(
δµnj − δµni

)
+ bn−1

i j���√wi j

(
δµnj − δµni

)
+ bn−1

i j

���, (30)

with the convention that 0/0 = 0. Lastly, we update the iterative parameter b with

bnij = bn−1
i j +

√
wi j

(
δµnj − δµni

)
− νnij . (31)

We can similarly apply ADMM to the minimization of I-GTV, which can be transformed into
the following unconstrained problem with the auxiliary splitting vector variable ν, an augmented
Lagrangian multiplier b, and a positive penalty parameter θ.

δµn, νn = arg min
δµ,ν

{
1
2
‖Jδµ − δΦ‖22 + λ

N∑
i=1
‖νi ‖2 +

θ

2

N∑
i=1
‖νi − ∇w(δµi) − bn−1

i ‖22

}
. (32)

The L2 subproblem with respect to δµ is the same as the one in A-GTV and can be computed
with Eq. (28). We then fix δµ to minimize the second subproblem with respect to ν:

νn = arg min
ν

{
λ

N∑
i=1
‖νi ‖2 +

θ

2

N∑
i=1
‖νi − ∇w(δµni ) − bn−1

i ‖22

}
, (33)

which can be solved with the following soft thresholding equation

νnij = max ©­«
√√ ∑

j∈Ni

(√
wi j

(
δµnj − δµni

)
+ bn−1

i j

)2
− λ
θ
, 0ª®¬

√
wi j

(
δµnj − δµni

)
+ bn−1

i j√ ∑
j∈Ni

(√
wi j

(
δµnj − δµni

)
+ bn−1

i j

)2
,

(34)
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Algorithm 2: ADMM-based algorithm for I-GTV and A-GTV.

INPUT: δΦ, J, y, inner−loop, ε1, regularization parameter θ > 0, λ > 0

Initialization: ν0 = b0 = 0

for n = 1 : inner−loop

1: Update δµn using Eq. (28)

2: Update νn using Eq. (30) for A-GTV or Eq. (34) for I-GTV

3: Update bn using Eq. (31)

4: Stop if n = inner−loop or | |δµ
n−δµn−1 | |1
| |δµn−1 | |1

≤ ε1.

RETURN δµk = δµn

with the convention that 0/0 = 0. The update of iterative parameter b is the same as for A-GTV,
as shown in Eq. (31). The ADMM-based algorithm for A-GTV and I-GTV is given in Algorithm
2.

Therefore the whole procedure for minimizing the TV-regularized inverse problem (Eq. (15))
is given in Algorithm 3, in which outer−loop represents the maximum number of iterations
required for the DOT reconstruction.

Algorithm 3: Algorithm for minimizing the TV-associated inverse problem.

INPUT: ΦM, F (·), µ0, outer−loop, ε2
for k = 1 : outer−loop

1: Compute F
(
µk−1) and Jk−1

2: Set δΦk−1 = ΦM − F
(
µk−1)

3: Compute δµk by introducing δΦk−1 and Jk−1 to one of Algorithm 1-2

4: Update µk = δµk + µk−1

5: Stop if k = outer−loop or | |F(µ
k )−ΦM | |22−| |F(µk−1)−ΦM | |22
| |F(µk−1)−ΦM | |22

≤ ε2.

end for

RETURN µk

4. Experiments

In this section, we describe extensive experiments to qualitatively and quantitatively evaluate the
performance of finite element and graph representations on the two variants of TV regularization
in DOT. We use the finite element representation for the forward modelling in all the experiments
and use both the finite element and graph representations to discretize the TV regularization term
during the solution of the inverse problem. We first define four evaluation metrics to quantify the
quality of the reconstructed images. Then we describe simulated numerical experiments on 2D
circle and 3D head samples, and real experiments performed on phantom samples. Fig. 2 shows
the unstructured grids of the three computational domains. Red dots represent the vertices in
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the computational domain. In 2D, using the finite element representation, the computational
domain is discretized with a finite number of triangles (Fig. 2 (d)) while in 3D, tetrahedra
are taken as the basic element (Fig. 2 (e)). However the graph representation is the same in
both 2D and 3D because the graph method requires only vertices and edges of the mesh. For
simulated experiments in which measurement noise was added, ten repeats were performed. In
all experiments, the forward model was implemented using the NIRFAST package [45] in Matlab
R2017a (Mathworks, Natick, USA). The simulated experiments conducted are all based on single
wavelength continuous-wave (CW) measurements where the optical property to be recovered is
the tissue absorption coefficient µa at that wavelength. We set inner_loop to 100, outer−loop to
40, ε1 to 0.001 and ε2 to 2% for all experiments in this paper.
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Fig. 2. (a)-(c): Discretized computational domain of the three experimental samples; (d):
Detailed mesh composition of 2D geometry in finite element and graph representation
respectively; (e): Detailed mesh composition of 3D geometry in finite element and graph
representation respectively.

4.1. Quantitative evaluation metrics

The quantitative evaluation is performed using four evaluation metrics: the localization error,
average contrast, peak signal-to-noise ratio (PSNR) and relative recovered volume. If the
reconstructed image is identical to the ground truth image, the localization error is 0, average
contrast and relative recovered volume are both equal to 1. PSNR is higher if the reconstructed
image is closer to the ground truth image.
Localization error is defined as the Euclidian distance between the central nodes Xs of the

simulated activation region and Xr of the recovered activation region. The recovered activation
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regions are selected by thresholding the recovered changes based on 60% of the maximum
recovered changes.

Localization error = ‖Xs − Xr‖2. (35)

The second evaluation metric is the average contrast which is based on the mean value of the
region of interest:

Average contrast =

(
Nr∑
i=1

µi/Nr

)
/µ̃, (36)

where µi denotes the recovered optical property on the finite element node i. Nr is the number of
nodes in the recovered activation region. µ̃ is the ground truth values of the optical property in
the recovered activation region.

PSNR is the third evaluation metric, which aims to evaluate the difference between the ground
truth image and the recovered image. Larger PSNR values means less difference between these
two types of images. PSNR is defined as follows

PSNR = 10 · log10

(
MAX2

µ/MSE
)
. (37)

Here, MAXµ is the maximum pixel value of µ and MSE is the mean squared error between the
recovered and ground truth images with MSE =

∑N
i=1

(
µi − µ̃i

)2/N .
Finally, we measure the relative recovered volume which is given as

VRRV = Vr/Vs × 100%, (38)

where Vr and Vs denote the volume of the recovered activation region and simulated activation
region, respectively.

A-FETV 

A-GTV 

0% 1% 2% 3% 

(a) 

(b) (c) 

(e) 

A-FETV 

A-GTV 

(f) 

(d) 

Fig. 3. (a)-(c): Reconstruction on the 2D mesh with low spatial resolution. (d)-(f):
Reconstruction on the 2D mesh with high spatial resolution. (a) and (d): 2D reconstruction
mesh with sixteen co-located sources and detectors. (b) and (e) give the original target
distributions. First row in (c) and (f) represents the results using A-FETV on 0% , 1% , 2%
and 3% noisy data while the second row shows the results using A-GTV.
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Fig. 4. (a)-(c): Reconstruction on the 2D mesh with low spatial resolution; (d)-(f):
Reconstruction on the 2D mesh with high spatial resolution. (a) and (d): 2D reconstruction
mesh with sixteen co-located sources and detectors. (b) and (e) give the original target
distributions. First row in (c) and (f) represents the results using I-FETV on 0% , 1% , 2%
and 3% noisy data while the second row shows the results by I-GTV.

4.2. Experiments on anisotropic TV regularization

Anisotropic TV regularization is easy to implement because the partial derivatives along different
directions can be decoupled as explained in Section 3.2. It is based on the assumption that the shape
of the region of interest is aligned with the coordinate axes. Its minimization favors horizontal
and vertical structures, because oblique structures cause the TV regularization to increase [36].
In DOT, this assumption does not necessarily hold as the region of interest is normally random
and structures are not normally aligned with the coordinate system. Therefore anisotropic TV
regularization seems to be a poor choice for discrete TV in DOT, as it yields ’blocky’ artefacts.
However no research has been carried out about the relationship between the ’blocky’ artefacts
and the representation employed to discretize over the unstructured computational domain. In
this section we investigate the anisotropic TV regularization in DOT reconstruction and compare
their FE- and graph-based implementations. The effect of the representation method adopted on
anisotropic TV regularization will be evaluated.
A 2D circular geometry is simulated with one anomaly centered at (-10mm,10mm). The 2D

model has a radius of 43mm while the radius of the anomaly is 10mm. Sixteen source-detector
fibres are placed equidistant around the external boundary for CW boundary data acquisition.
When one fibre as a source is turned on, the rest are used as detectors, leading to 240 total
boundary data points per wavelength. All sources were positioned one scattering distance within
the outer boundary because the source is assumed to be spherically isotropic. In order to evaluate
the effect of mesh resolution on the representation method, two reconstruction meshes are created
with different spatial resolutions. The coarser mesh has 1785 nodes and 3418 linear triangle
elements with the average element size 1.6977mm2 (Fig. 3 (a)) while the finer one has 5133 nodes
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and 10013 elements with the average element size 0.5801mm2 (Fig. 3 (d)). The background
absorption coefficient µa is set as 0.01mm−1 and µa for the anomaly is set as 0.03mm−1 (Fig.
3 (b) and (e)). µs remains constant as 1mm−1. To represent various realistic cases, normally
distributed randomly generated Gaussian noise ranging from 0% to 3% at 1% intervals was added
to the boundary measurements. Reconstructed images of the absorption coefficient are shown in
Figs. 3 (c) and (f).

4.3. Experiments on isotropic TV regularization

4.3.1. Two dimensional circular experiments

Using the same reconstruction meshes described in section 4.2, we compare I-FETV, I-GTV
against a baseline Tikhonov model. To represent various realistic cases, normally distributed
randomly generated noise ranging from 0% to 3% at 1% intervals was added to the amplitude of
the boundary data. Reconstructed images of absorption coefficient are shown in Figs. 4 (c) and
(f). The 1D cross sections and evaluation metrics comparisons are displayed in Fig. 5 and Fig. 6.
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Fig. 5. 1D cross section of images recovered in Fig. 4. First column corresponds to Fig. 4 (c)
where the spatial resolution of the reconstruction mesh is lower. Second column corresponds
to Fig. 4 (f) where the spatial resolution of the reconstruction mesh is higher. Top to bottom
row: 0%, 1%, 2% and 3% added Gaussian noise.
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Fig. 6. Evaluation metrics comparing the performance of different methods at four different
noise levels. Top to bottom row: localization error index; average contrast index; PSNR
index and relative recovered volume. Left column corresponds to the reconstructions in
Fig. 4 (c) where the reconsturction mesh resolution is low. Right column corresponds to
Fig. 4 (f) where the reconsturction mesh resolution is relatively high.

Table 2. Head tissue optical property for each of five layers.

Scalp Skull CSF Gray Matter White Matter

µa (mm−1) 0.017 0.012 0.004 0.018 0.017

µ′s (mm−1) 0.74 0.94 0.3 0.84 1.19

4.3.2. Three dimensional head numerical experiments

We now evaluate the isotropic TV model with two discrete differential operator definitions on
a physically realistic 3D head model. This was created from T1-weighted MPRAGE scans
acquired by Eggebrecht et al [7] using the process described by Wu et al [46] in which Statistical
Parametric Mapping (SPM) software [47] was used to perform parametric segmentation of five
tissue types (scalp, skull, cerebrospinal fluid (CSF), gray matter, white matter) based on the pixel
intensity probability function distribution. The five layers were processed in NIRFAST to create
masks and layered volumetric FEM meshes. The reconstruction mesh consists of 50721 nodes
associated with 287547 tetrahedral elements, with the average element size 9.2676mm3. Each
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node is labeled by one of the five segmented head tissue types. Absorption coefficients assigned
to each layer are from an in vivo study [48] at 750nm (Table 2).

 

I-FETV I-GTV Tikhonov Ground truth 

Fig. 7. First column: distribution of the imaging array with 158 sources (red dots) and
166 detectors (white dots) and the positions of the two simultaneous simulated anomalies.
Second to final column: Ground truth and reconstructions by Tikhonov, I-FETV and I-GTV.

I-FETV I-GTV Tikhonov Ground truth 

Fig. 8. 2D slices of the reconstructions of the absorption coefficient changes on the forehead
anomaly (first row in Fig. 7). The ground truth areas are highlighted in white ellipses.

A high-density (HD) imaging array with 158 sources and 166 detectors (Fig. 7 first column) [7]
was placed over the whole head, with source-detector (SD) separation distances ranging from
1.3 to 4.8cm. In this study, 3478 differential measurements per wavelength were used to image
hemodynamic changes in the brain. Two distinct anomalies were simulated simultaneously in
the brain, with each 15mm radius. In order to simulate the traumatic brain injury (TBI) cases
where tissue oxygen saturation (StO2) is normally between 50% and 75% [49,50], the absorption
coefficient in the two anomalies are calculated using Beer’s law [45] with 55% StO2 (Fig. 7
second column). In line with the expected in vivo performance of the imaging system, 0.12%,
0.15%, 0.41% and 1.42% Gaussian random noise was added to first (13mm), second (30mm),
third (40mm) and fourth (48mm) nearest neighbor measurements to provide realistic data [51].
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Reconstructed absorption coefficients using different model are displayed in the third to fifth
column of Fig. 7. Corresponding 2D slices are displayed in Figs. 8 and 9 and the evaluation
metrics are presented in Fig. 10.

I-FETV I-GTV Tikhonov Ground truth 

Fig. 9. 2D slices of the reconstructions of the absorption coefficient changes on the back-head
anomaly (second row in Fig. 7). The ground truth areas are highlighted in white ellipses.

4.3.3. Experiments with phantom data

In the final experiment we evaluate different methods on real experimental data which is collected
from a solid plastic cylindrical phantom using one non-contact CW-DOT system designed for
hand imaging [52]. The phantom has size of radius 12.3mm and length 50mm. 35 sources and
99 detectors are positioned on the underside and top of the phantom respectively (Fig. 11(a)).
The absorbing dye within the phantom was treated as a chromophore that has unit concentration
in the bulk of the phantom. Its extinction coefficient was modelled by the measured absorption
coefficient. A cylindrical rod was placed at the depth of 5mm to simulate the heterogeneous
version of the phantom (Fig. 11(a)). The rod has radius 3mm and length 50mm and provides a 2:1
contrast in dye concentration compared to background (Fig. 11 (c) top row). Five wavelengths
(650nm, 710nm, 730nm 830nm and 930nm) in a transmission setup are used to collect the
boundary data. The reconstruction mesh consists of 9082 nodes and 48099 linear tetrahedral
elements with the average tetrahedral elements size 0.4218mm3. Ground truth data and images
reconstructed with Tikhonov, I-FETV and I-GTV are shown in Fig. 11(c). The four evaluation
metrics in the volume of illumination are given in Table 3. For all the experiments above, the
regularization parameter λ is determined using an L-curve method [13].

5. Discussion

The 2D images reconstructed using A-FETV and A-GTV are shown in Fig. 3, together with the
original target distributions. The results show that A-FETV keeps reconstructing the target with
boundaries that align with the coordinate axes which is same to the assumption of the anisotropic
TV regularization. In addition, some artefacts are observed inside the recovered region of
interest when the mesh resolution is low. The reconstructions using A-GTV do not feature these
artefacts, and the recovered shape is more accurate, with no bias towards the coordinate axes. The
experiments reveal that the blocky artefacts of anisotropic TV regularization are associated with
the discretization method used. The blocky artefacts are clearly visible in reconstructions based
on the finite element representation, but not in the ones based on the graph representation. This
is because in the graph representation, the region is discretized along all edge-based directions,
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Fig. 10. Evaluation metrics comparing the performance of different methods on a 3D head
model. The left column represents the reconstruction of the forehead anomaly (first row in
Fig. 7), while the right column gives the reconstruction of the back-head anomaly (second
row in Fig. 7).

leading to nearly isotropic solutions. Therefore in DOT, A-GTV can adapt to the ground truth
solution. However, it is not a good method to preserve anisotropy if anisotropy is a desired
property of the solution.
For the 2D case which uses isotropic TV regularization, Fig. 4, Tikhonov reconstruction

over-smooths the results and smears the edges. The results become smoother with increases
in measurement noise. Little difference can be visually observed between the reconstruction
by I-FETV and I-GTV when the reconstruction mesh resolution is low. However when the
reconstruction mesh has higher resolution, Fig. 4 (f), the results by I-FETV is visually closer to
the ground truth than the ones by I-GTV. Similar findings are observed from the corresponding
1D cross sections (Fig. 5). Tikhonov reconstruction produces a single peaked distribution in the
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Fig. 11. (a): Distribution of sources and detectors. (b): Illustration of the overall distribution
of three slices. (c): Ground truth and reconstruction results with different methods. From
top to bottom: ground truth; results with Tikhonov regularization; results with I-FETV
regularization and results with I-GTV regularization.

piecewise constant target area, and edges of the objects are over-smoothed. Both TV methods are
able to reconstruct a piecewise constant distribution. However when the mesh resolution is lower
(first column in Fig. 5), fluctuations in the target regions are observed in the results by I-FETV.
When the mesh resolution is higher (second column in Fig. 5), the cross-section from I-FETV
reconstruction is almost identical to the ground truth. In Fig. 6, red and blue areas represent
25% to 75% value among the ten repeats’ experiments. We see that the performance of I-FETV
improves with an increase of mesh resolution: by 25% in localization error, 26% in average
contrast and 11% in PSNR, while the performance of I-GTV is relatively unaffected by the mesh
resolution. These 2D experiments confirm that the discrete differential operators based on graph
representation are not affected by the mesh resolution while the ones based on a finite element
representation become more accurate when the reconstruction mesh is finer.
The 3D images reconstructed from the head geometry represent a physically realistic case,

in which two anomalies are simulated simultaneously in the brain. From Fig. 7, Tikhonov
reconstruction lead to many visible artefacts near the source and detector area. Due to smoothing
induced by Tikhonov regularization, sharp features are not present in the image recovered. I-FETV
and I-GTV both can eliminate the surface artefacts resulting from Tikhonov regularization and
reconstruct tightly localized results. These findings can be clearly observed in the 2D slice images
shown in Fig. 8 and Fig. 9. It should be noticed that, in Fig. 8, the colorbar values corresponding
to the green and red parts remain 0.001. It is because only three digits are selected after the radix
point and in this study we use rounding off to constrain the three digits. From the visualization of
the results, there is no obvious difference between the reconstruction performance of I-FETV
and I-GTV because both are based on TV regularization. However it can be observed from
the evaluation metrics comparison in Fig. 10 that I-GTV achieves the lowest localization error,
highest peak signal-to-noise ratio and average contrast much closer to 1. The average relative
recovered volume achieved by I-GTV is 77%, compared with I-FETV (66%) and Tikhonov
(64%). This experiment confirms the lower performance of I-FETV on reconstruction meshes
with low spatial resolution.
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In the experiments with phantom data, only the central region is reconstructed in all the
cases because the positions of sources and detectors lead to very low sensitivity away from
the centre. It can be seen from the second row of Fig. 11(c), that Tikhonov regularization
over-smooths the reconstructed images which have much lower image contrast than the ground
truth, especially in the first slice image. Artefacts are clearly observed near the source and
detector areas. Even though total variation regularization can alleviate the over-smoothing effect
caused by Tikhonov regularization, discretization methods still play an important role in the
reconstruction performance. It should be noticed that I-FETV can alleviate the artefacts near to
the sources and detectors but introduce some artefacts (staircase effect) in the non-anomaly area
and does not preserve edges. I-GTV is seen to recover the anomaly with clear edges and high
image contrast. It is interesting to compare these results to those of our previous work [13] where
L1 regularization was applied to the phantom data. Reconstructions by L1 regularization were
found to be over-sparsified and over-compact. In this work, TV regularization, which induces
sparsity to the gradient of the solution, is seen to effectively alleviate the over-sparsifying effect of
L1 regularization and is therefore suitable for non-sparse coefficient distributions. We calculate
the four evaluation metrics in the volume of illumination (Table 3) and these support the same
conclusions. Similar localization errors are obtained by the different methods with only 1mm
difference. Comparing to I-FETV, I-GTV can obtain the highest average contrast and PSNR
values with similar relative recovered volume.

Table 3. Evaluation of different methods for reconstruction on a tissue-simulating phantom.

Localization error / mm Average contrast / - PSNR / - Relative recovered volume / %

Tikhonov 2.90 0.74 13.74 40

I-FETV 2.81 0.69 14.77 48

I-GTV 3.16 0.79 16.71 46

6. Conclusion

In this paper, we introduce finite element and graph representations to discretize the TV regular-
ization term in DOT reconstruction. Isotropic and anisotropic variants of the TV regularization
are also investigated and compared between their FE- and graph-based implementations. The
ADMM-based algorithms are proposed for each TV-regularized inverse problem. Experiments
on the anisotropic TV regularization reveal that finite element representation yields the ’blocky’
artefacts which is the designed in feature in the anisotropic TV regularization. However the
graph representation favors the underlying shape of the region of interest so that the ’blocky’
artefacts are not realized. Graph discretization on anisotropic TV regularization can adapt to the
ground truth solution, but is not a good way to preserve anisotropy.

Numerical experiments on isotropic TV regularization illustrate that, comparing to Tikhonov
regularization, TV regularization can alleviate the over-smoothing effect of Tikhonov regulariza-
tion and localize the anomaly by inducing sparsity of the gradient of the solution. These findings
were tested on real experimental data using a tissue-simulating phantom. I-FETV does not
perform well on low resolution reconstruction meshes because of the discrete nature of the finite
element representation. Because the finite element representation operates on each element, the
discretization becomes more accurate when the mesh resolution increases. I-GTV is shown to be
more stable and robust to changes in mesh resolution because I-GTV is discretized on the graph
directly, having no information of elements. Hence I-GTV can give more accurate discretization
when the reconstruction mesh is a coarse mesh which is the usual case in DOT. However, I-FETV
will outperform I-GTV when an reconstruction mesh with high resolution is available.
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