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Abstract. In this paper we introduce a novel and accurate optimisation
method for segmentation of cardiac MR (CMR) images in patients with
pulmonary hypertension (PH). The proposed method explicitly takes
into account the image features learned from a deep neural network. To
this end, we estimate simultaneous probability maps over region and edge
locations in CMR images using a fully convolutional network. Due to the
distinct morphology of the heart in patients with PH, these probability
maps can then be incorporated in a single nested level set optimisation
framework to achieve multi-region segmentation with high efficiency. The
proposed method uses an automatic way for level set initialisation and
thus the whole optimisation is fully automated. We demonstrate that
the proposed deep nested level set (DNLS) method outperforms existing
state-of-the-art methods for CMR segmentation in PH patients.

1 Introduction

Pulmonary hypertension (PH) is a cardiorespiratory syndrome characterised by
increased blood pressure in pulmonary arteries. It typically follows a rapidly pro-
gressive course. As such, early identification of PH patients with elevated risk of
a deteriorating course is of paramount importance. For this, accurate segmenta-
tion of different functional regions of the heart in CMR images is critical.

Numerous methods for automatic and semi-automatic CMR image segmen-
tation have been proposed, including deformable models [1], atlas-based image
registration models [2] as well as statistical shape and appearance models [3].
More recently, deep learning-based methods have achieved state-of-the-art per-
formance in the CMR domain [4]. However, the above approaches for CMR
image segmentation have multiple drawbacks. First, they tend to focus on left
ventricle (LV) [1]. However, the prognostic importance of the right ventricle (RV)
is a broad range of cardiovascular disease and using the coupled biventricular
motion of the heart enables more accurate cardiac assessment. Second, existing
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approaches rely on manual initialisation of the image segmentation or definition
of key anatomical landmarks [1–3]. This becomes less feasible in population-level
applications involving hundreds or thousands of CMR images. Third, existing
techniques have been mainly developed and validated using normal (healthy)
hearts [1,2,4]. Few studies have focused on abnormal hearts in PH patients.

To address the aforementioned limitations of current approaches, in this
paper we propose a deep nested level set (DNLS) method for automated biven-
tricular segmentation of CMR images. More specifically, we make three distinct
contributions to the area of CMR segmentation, particularly for PH patients:
First, we introduce a deep fully convolutional network that effectively combines
two loss functions, i.e. softmax cross-entropy and class-balanced sigmoid cross-
entropy. As such, the neural network is able to simultaneously extract robust
region and edge features from CMR images. Second, we introduce a novel implicit
representation of PH hearts that utilises multiple nested level lines of a contin-
uous level set function. This nested level set representation can be effectively
deployed with the learned deep features from the proposed network. Further-
more, an initialisation of the level set function can be readily derived from the
learned feature. Therefore, DNLS does not need user intervention (manual ini-
tialisation or landmark placement) and is fully automated. Finally, we apply the
proposed DNLS method to clinical data acquired from 430 PH patients (approx.
12000 images), and compare its performance with state-of-the-art approaches.

2 Modelling Biventricular Anatomy in Patients with PH
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Fig. 1. Short-axis images of a
healthy subject (left) and a PH sub-
ject (right), including the anatomical
explanation of both LV and RV. The
desired epicardial contours (red) and
endocardial contours (yellow) from
both ventricles are plotted.

To illustrate cardiac morphology in patients
with PH, Fig. 1 shows the difference in
CMR images from a representative healthy
subject and a PH subject. In health, the
RV is crescentic in short-axis views and
triangular in long-axis views, wrapping
around the thicker-walled LV. In PH, the
initial hypertrophic response of the RV
increases contractility but is followed invari-
ably by progressive dilatation and failure
heralding clinical deterioration and ulti-
mately death. During this deterioration, the
dilated RV pushes onto the LV to deform
and lose its roundness. Moreover, in PH
the myocardium around RV become much
thicker than a healthy one, allowing PH cardiac morphology to be modelled
by a nested level set. Next, we incorporate the biventricular anatomy of PH
hearts into our model for automated segmentation of LV and RV cavities and
myocardium.
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3 Methodology

Nested Level Set Approach: We view image segmentation in PH as a multi-
region image segmentation problem. Let I : Ω → R

d denote an input image
defined on the domain Ω ⊂ R

2. We segment the image into a set of n pairwise
disjoint region Ωi, with Ω = ∪n

i=1Ωi, Ωi ∩ Ωj = ∅ ∀i �= j. The segmentation
task can be solved by computing a labelling function l(x) : Ω → {1, . . . , n} that
indicates which of the n regions each pixel belongs to: Ωi = {x |l (x) = i}. The
problem is then formulated as an energy minimisation problem consisting of a
data term and a regularisation term

min
Ω1,...,Ωn

{
n∑

i=1

∫
Ωi

fi (x) dx + λ

n∑
i=1

Perg (Ωi, Ω)

}
. (1)

Fig. 2. An example of partitioning
the domain Ω into 4 disjoint regions
(right), using 3 nested level lines
{x|φ(x) = ci, i = 1, 2, 3} of the
same function φ (left). The inters-
actions between the 3D smooth sur-
face φ and the 2D plans correspond
to the three nested curves on the
right.

The data term, fi : Ω → R is associ-
ated with region that takes on smaller values
if the respective pixel position has stronger
response to region. In a Bayesian MAP infer-
ence framework, fi (x) = − log Pi (I (x) |Ωi)
corresponds to the negative logarithm of the
conditional probability for a specific pixel
color at the given location x within region Ωi.
Here we refer to fi as region feature. The sec-
ond term, Perg (Ωi, Ω) is the perimeter of the
segmentation region Ωi, weighted by the non-
negative function g. This energy term alone
is known as geodesic distance, the minimisa-
tion over which can be interpreted as finding
a geodesic curve in a Riemannian space. The
choice of g can be an edge detection function
which favours boundaries that have strong gradients of the input image I. Here
we refer to g as edge feature.

We apply the variational level set method [5,6] to (1) in this study. Because a
PH heart can be implicitly represented by two nested level lines of a continuous
level set function ({x|φ(x) = ci, i = 1, 2} in Fig. 2). Note that the nested level set
idea present here is inspired from previous work [1,7]. Our approach uses features
learned from many images while previous work only consider single image. With
the idea, we are able to approximate the multi-region segmentation energy (1) by
using only one continuous function. The computational cost is thus small. Now
assume that the contours in the image I can be represented by level lines of the
same Lipschitz continuous level set function φ : Ω → R. With n − 1 distinct
levels {c1 < c2 < · · · < cn−1}, the implicit function φ partitions the domain Ω
into n disjoint regions, together with their boundaries (see Fig. 2 right). We can
then define the characteristic function χiφ for each region Ωi as
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χiφ(x) =

⎧⎨
⎩

H (ci − φ(x)) i = 1
H (φ(x) − ci−1) H (ci − φ(x)) 2 ≤ i ≤ n − 1
H (φ(x) − ci−1) i = n

, (2)

where H is the one-dimensional Heaviside function that takes on either 0 or 1
over the whole domain Ω. Due to the non-differentiate nature of H it is usually
approximated by its smooth version Hε for numerical calculation [7]. Note that
in (2)

∑n
i=1 χiφ = 1 is automatically satisfied, meaning that the resulting seg-

mentation will not produce a vacuum or an overlap effect. That is, by using (2)
Ω = ∪n

i=1Ωi and Ωi ∩ Ωj = ∅ hold all the time. With the definition of χiφ, we
can readily reformulate (1) in the following new energy minimisation problem

min
φ(x)

{
n∑

i=1

∫
Ω

fi (x) χiφ (x) dx + λ
n−1∑
i=1

∫
Ω

g (x) |∇H (φ (x) − ci)| dx

}
. (3)

Note that (3) differs from (1) in multiple ways due to the use of the smooth
function φ and characteristic function (2). First, the variable to be minimised is
the n regions Ω1, . . . , Ωn in (1) while the smooth function φ in (3). Second, the
minimisation domain is changing from over Ωi in (1) to over Ω in (3). Third (1)
uses an abstract Perg (Ωi, Ω) for the weighted length of the boundary between
two adjacent regions, while (3) represents the weighted length with the co-area
formula, i.e.

∫
Ω

g |∇H (φ − ci)| dx. Finally, the upper limit of summation in the
regularisation term of (1) is n while n − 1 in that of (3). So far, the region
features fi and the edge feature g have not been defined. Next, we will tackle
this problem.

Learning Deep Features Using Fully Convolutional Network: We pro-
pose a deep neural network that can effectively learn region and edge fea-
tures from many labelled PH CMR images. Learned features are then incor-
porated to (3). Let us formulate the learning problem as follows: we denote
the input training data set by S = {(Up, Rp, Ep), p = 1, . . . , N}, where sample
Up = {up

j , j = 1, . . . , |Up|} is the raw input image, Rp = {rp
j , j = 1, . . . , |Rp|},

rp
j ∈ {1, . . . , n} is the ground truth region labels (n regions) for image Up, and

Ep = {ep
j , j = 1, . . . , |Ep|}, ep

j ∈ {0, 1} is the ground truth binary edge map
for Up. We denote all network layer parameters as W and propose to minimise
the following objective function via the (back-propagation) stochastic gradient
descent

W∗ = argmin(LR(W) + αLE(W)), (4)

where LR(W) is the region associated cross-entropy loss that enables the net-
work to learn region features, while LE(W) is the edge associated cross-entropy
loss for learning edge features. The weight α balances the two losses. By
minimising (4), the network is able to output joint region and edge proba-
bility maps simultaneously. In our image-to-image training, the loss function
is computed over all pixels in a training image U = {uj , j = 1, . . . , |U |},
a region map R = {rj , j = 1, . . . , |R|}, rj ∈ {1, . . . , n} and an edge map
E = {ej , j = 1, . . . , |E|}, ej ∈ {0, 1}. The definitions of LR(W) and LE(W)
are given as follows.
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LR(W) = −
∑

j

logPso(rj |U,W), (5)

where j denotes the pixel index, and Pso(rj |U,W) is the channel-wise softmax
probability provided by the network at pixel j for image U . The edge loss is

LE(W) = −β
∑

j∈Y+

logPsi(ej = 1|U,W)− (1−β)
∑

j∈Y−

logPsi(ej = 0|U,W). (6)

For a typical CMR image, the distribution of edge and non-edge pixels is heavily
biased. Therefore, we use the strategy [8] to automatically balance edge and non-
edge classes. Specifically, we use a class-balancing weight β. Here, β = |Y−|/|Y |
and 1−β = |Y+|/|Y |, where |Y−| and |Y+| respectively denote edge and non-edge
ground truth label pixels. Psi(ej = 1|U,W) is the pixel-wise sigmoid probability
provided by the network at non-edge pixel j for image U .

C14b (2x up)
C14c (4x up)

C14d (8x up)
C14e (16x up)

C14a (0x up)

C1     C2C3C4 C5 C6     C7       C8          C9         C10 C11           C12              C13 C15             C16      C17

1 2

43

Fig. 3. The architecture of a fully convolutional network with 17 convolutional layers.
The network takes the PH CMR image as input, applies a branch of convolutions,
learns image features from fine to coarse levels, concatenates (‘+’ sign in the red layer)
multi-scale features and finally predicts the region (1–3) and edge (4) probability maps
simultaneously.

In Fig. 3, we show the network architecture for automatic feature extraction,
which is a fully convolutional network (FCN) and adapted from the U-net archi-
tecture [9]. Batch-normalisation (BN) is used after each convolutional layer, and
before a rectified linear unit (ReLU) activation. The last layer is however fol-
lowed by the softmax and sigmoid functions. In the FCN, input images have pixel
dimensions of 160 × 160. Every layer whose label is prefixed with ‘C’ performs
the operation: convolution → BN → ReLU, except C17. The (filter size/stride) is
(3 × 3/1) for layers from C1 to C16, excluding layers C3, C5, C8 and C11 which
are (3×3/2). The arrows represent (3 × 3/1) convolutional layers (C14a−e) fol-
lowed by a transpose convolutional (up) layer with a factor necessary to achieve
feature map volumes with size 160 × 160 × 32, all of which are concatenated
into the red feature map volume. Finally, C17 applies a (1× 1/1) convolution
with a softmax activation and a sigmoid activation, producing the blue feature
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map volume with a depth n + 1, corresponding to n (3) region features and an
edge feature of an image.

After the network is trained, we deploy it on the given image I in the vali-
dation set and obtain the joint region and edge probability maps from the last
convolutional layer

(PR, PE) = CNN(I,W∗), (7)

where CNN(·) denotes the trained network. PR is a vector region probability
map including n (number of regions) channels, while PE is a scalar edge prob-
ability map. These probability maps are then fed to the energy (3), in which
fi = −logPRi, i = {1, . . . , n} and g = PE . With all necessary elements at hand,
we are ready to minimise (3) next.

Optimisation: The minimisation process of (3) entails the calculus of vari-
ations, by which we obtain the resulting Euler-Lagrange (EL) equation with
respect to the variable φ. A solution (φ∗) to the EL equation is then iteratively
sought by the following gradient descent method

∂φ

∂t
= −

n∑
i=1

fi
∂χiφ

∂φ
+ λκg

n−1∑
i=1

δε (φ − ci), (8)

where κg = div (g∇φ/|∇φ|) is the weighted curvature that can be numerically
implemented by the finite difference method on a half-point grid [10]. δε is the
derivative of Hε, which is defined in [7].

At steady state of (8), a local or global minimiser of (3) can be found. Note
that the energy (3) is nonconvex so it may have more than one global minimiser.
To obtain a desirable segmentation result, we need a close initialisation of the
level set function (φ0) such that the algorithm converges to the solution we want.
We tackle this problem by thresholding the region probability map PR3 and then
computing the signed distance function (SDF) from the binary image using the
fast sweeping algorithm. The resulting SDF is then used as φ0 for (8). In this
way, the whole optimisation process is fully automated.

4 Experimental Results

Data: Experiments were performed using short-axis CMR images from 430 PH
patients. For each patient 10 to 16 short-axis slices were acquired roughly cover-
ing the whole heart. Each short-axis image has resolution of 1.5×1.5×8.0 mm3.
Due to the large slice thickness of the short-axis slices and the inter-slice shift
caused by respiratory motion, we train the FCN in a 2D fashion and apply the
DNLS method to segment each slice separately. The ground truth region labels
were generated using a semi-automatic process which included a manual cor-
rection step by an experienced clinical expert. Region labels for each subject
contain the left and right ventricular blood pools and myocardial walls for all
430 subjects at end-diastolic (ED) and end-systolic (ES) frames. The ground
truth edge labels are derived from the region label maps by identifying pixels
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with label transitions. The dataset was randomly split into training datasets
(400 subjects) and validation datasets (30 subjects). For image pre-processing,
all training images were reshaped to the same size of 160×160 with zero-padding,
and image intensity was normalised to the range of [0, 1] before training.

Parameters: The following parameters were used for the experiments in this
work: First, there are six parameters associated with finding a desirable solution
to (3). They are the weighting parameter λ (1), regularisation parameter ε (1.5),
two levels c1 (0) and c2 (8), time step t (0.1), and iteration number (200). Second,
for training the network, we use Adam SGD with learning rate (0.001) and batch
size (two subjects) for each of 50000 iterations. The weight α in (4) is set to 1.
We perform data augmentation on-the-fly, which includes random translation,
rotation, scaling and intensity rescaling of the input images and labels at each
iteration. In this way, the network is robust against new images as it has seen
millions of different inputs by the end of training. Note that data augmentation
is crucial to obtain better results. Training took approx. 10 h (50000 iterations)
on a Nvidia Titan XP GPU, while testing took 5s in order to segment all the
images for one subject at ED and ES.

Vanilla CNN CRF-CNN DNLS GT

Fig. 4. Visual comparison of segmentation results from the vanilla CNN, CRF-CNN
and proposed method. LV & RV cavities and myocardium are delineated using yellow
and red contours. GT stands for ground truth.

Table 1. Quantitative comparison of segmentation results from the vanilla CNN, CRF-
CNN and proposed method, in terms of Dice metric (mean±standard deviation) and
computation time at testing stage.

Methods LV & RV Cavities Myocardium Time

Vanilla CNN [4] 0.902 ± 0.047 0.703 ± 0.091 ∼0.06s

CRF-CNN [11] 0.911 ± 0.045 0.712 ± 0.082 ∼2s

Proposed DNLS 0.925± 0.032 0.772± 0.058 ∼5s

Comparsion: The segmentation performance was evaluated by computing the
Dice overlap metric between the automated and ground truth segmentations
for LV & RV cavities and myocardium. We compared our method with the
vanilla CNN proposed in [4], the code of which is publicly available. DNLS was
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also compared with the vanilla CNN with a conditional random field (CRF)
[11] refinement (CRF-CNN). In Fig. 4, visual comparison suggests that DNLS
provides significant segmentation improvements over CNN and CRF-CNN. For
example, at the base of the right ventricle both CNN and CRF-CNN fail to
retain the correct anatomical relationship between endocardium and epicardium
portraying the endocardial border outside the epicardium. CRF-CNN by con-
trast retains the endocardial border within the epicardium, as described in the
ground truth. In Table 1, we report their Dice metric of ED and ES time frames
in the validation dataset and show that our DNLS method outperforms the other
two methods for all the anatomical structures, especially for the myocardium.
CNN is the fastest method as it was deployed with GPU, and DNLS is the most
computationally expensive method due to its complex optimisation processes.

5 Conclusion

In this paper, we proposed the deep nested level set (DNLS) approach for seg-
mentation of CMR images in patients with pulmonary hypertension. The main
contribution is that we combined the classical level set method with the preva-
lent fully convolutional network to address the problem of pathological image
segmentation, which is a major challenge in medical image segmentation. The
DNLS inherits advantages of both level set method and neural network, the
former being able to model complex geometries of cardiac morphology and the
latter providing robust features. We have shown the derivation of DNLS in detail
and demonstrated that DNLS outperforms two state-of-the-art methods.
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