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Learning a Model-Driven Variational Network
for Deformable Image Registration
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Abstract— Data-driven deep learning approaches to
image registration can be less accurate than conventional
iterative approaches, especially when training data is lim-
ited. To address this issue and meanwhile retain the fast
inference speed of deep learning, we propose VR-Net,
a novel cascaded variational network for unsupervised
deformable image registration. Using a variable splitting
optimization scheme, we first convert the image registration
problem, established in a generic variational framework,
into two sub-problems, one with a point-wise, closed-form
solution and the other one being a denoising problem.
We then propose two neural layers (i.e. warping layer and
intensity consistency layer) to model the analytical solution
and a residual U-Net (termed generalized denoising layer)
to formulate the denoising problem. Finally, we cascade
the three neural layers multiple times to form our VR-
Net. Extensive experiments on three (two 2D and one 3D)
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cardiac magnetic resonance imaging datasets show that
VR-Net outperforms state-of-the-art deep learning methods
on registration accuracy, whilst maintaining the fast infer-
ence speed of deep learning and the data-efficiency of
variational models.

Index Terms— Convolutional neural network, image
registration, unsupervised learning, variational model, vari-
ational neural network.

I. INTRODUCTION

IMAGE registration maps a floating image to a reference
image according to their spatial correspondence. The proce-

dure typically involves two operations: 1) estimating the spatial
transformation between the image pair; 2) deforming the float-
ing image with the estimated transformation. In medical image
analysis, registration is critical for many automatic analysis
tasks such as multi-modality fusion, population modeling, and
statistical atlas learning [1], [2].

Image registration approaches can be broadly categorized
into two major branches: intensity-based and landmark-based
approaches. The intensity-based approaches can be either
mono-modal or multi-modal. In mono-modal registration,
a variational framework is often used in which the problem is
framed as an optimization of the form:

min
u

1

2

�
�

|I1(x + u(x)) − I0(x)|2dx + λR (u(x)) , (1)

where I0 and I1:
�
� ⊆ R

d
� → R represent the refer-

ence image and the floating image, respectively. u(x) =
(ux(x), uy(x))T : � → R

d denotes the deformation. In this
paper, we study d = 2 and d = 3 which correspond to two-
dimensional (2D) and three-dimensional (3D) cases. The first
term (i.e., data term) is the sum of squared differences (SSD),
which is a similarity measure. Minimization of the data term
alone is typically an ill-posed problem with many possible
solutions. Hence, the second term (i.e., regularization term) is
needed, which is normally chosen to control the smoothness
of the deformation.

The variational model is among the most successful and
accurate approaches to calculate a deformation between two
images [3]. Given a specific regularization term, such a
model has a clear mathematical structure and it is also well
understood which mathematical space the solution lies in,
e.g., Hilbert space [4]–[6], bounded variation [7], [8], etc.
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However, the variational model has limitations: (1) For each
image pair, the hyper-parameter λ needs to be tuned carefully
to deliver a precise deformation. While too small a λ leads
to an irregular, non-smooth deformation, setting it too high
reduces the deformation magnitude and therefore loses the
ability to model large deformations. (2) The hand-crafted
regularization term itself is another hyper-parameter, which
is usually selected based on assumptions about the deforma-
tion. However, existing assumptions may be too simple to
capture complex changes of image content associated with
biological tissues. (3) The variational model is nonlinear
and therefore needs to be optimized iteratively, which is
very time-consuming especially for high-dimensional data
inputs.

Many deep learning approaches have been proposed for
unsupervised deformable medical image registration [9]–[14].
In order to learn a deformation, almost all of these learning-
based approaches follow the formulation of u = f (I0, I1|W),
where f is a convolutional neural network (CNN) and W
denotes the weights of the CNN. These approaches are purely
data-driven and differ from iterative variational approaches in
two main aspects. (1) Data-driven approaches take images as
input and directly output the estimated deformations under
a loss criterion, while traditional iterative approaches take
an initial deformation as input, and output a final refined
deformation which is built upon the previous deformations
in the iterative optimization. Whilst data-driven approaches
often require substantial quantities of training data to reach
an adequate level of performance, the iterative methods can
work well in low data regimes. Additionally, the heavy data
dependence of deep learning can result in a network that
overfits the training data, and therefore lacks generalization
abilities. (2) Classical iterative methods explicitly use prior and
domain knowledge to construct a mathematical formulation.
In contrast, data-driven methods implicitly learn prior and
domain knowledge through the optimization of respective loss
functions rather than explicitly building this knowledge into
the network architecture itself. Some researches [15]–[18]
in image reconstruction have shown that integrating such
knowledge into the network enables it to learn better.
Within image registration, data-driven approaches have not yet
exceeded the accuracy of iterative approaches in some tasks
according to [1], [19], [20], however, they have the advantage
of significantly faster inference than their iterative optimization
based counterparts.

In order to take advantage of both methods, in this paper,
we unify a data-driven and an iterative approach into one
framework and propose a model-driven variational registration
network, which we term VR-Net as shown in Fig. 1. By
unifying these two approaches, the VR-Net can leverage infor-
mation from the entire training set to help registration in every
single case, thereby having the potential to outperform iterative
approaches. Note that we use the term iterative methods to
denote traditional registration approaches such as TV-L1 and
FFD, which have a data term, a regularization term, and
an optimization scheme to minimize the terms. We use the
term data-driven to denote the recent deep learning methods
that require large quantities of training data, following [20].

A model-driven approach is a learning-based approach that
combines data-driven and iterative methods.

Specifically, with the help of a variable splitting scheme for
optimization, we decompose the original iterative variational
problem into two sub-problems. One has a point-wise, closed-
form solution and the other can be formulated as a denoising
problem. Next, we formulate the point-wise, closed-form
solution with a warping layer and an intensity consistency
layer. We then propose a residual U-Net for the denoising sub-
problem which can be regarded as a learnable regularization
term embedded in the VR-Net, replacing the hand-crafted
hyper-parameter seen in iterative variational methods. Finally,
within the VR-Net we cascade the warping layer, the intensity
consistency layer, and the generalized denoising layer to mimic
the iterative process of solving a variational model.

To evaluate the proposed VR-Net, we use two 2D pub-
licly available cardiac MRI datasets, i.e., the UK Biobank
dataset [21], Automatic Cardiac Diagnosis Challenge (ACDC)
dataset [22], and one 3D cardiac MRI dataset (3D CMR)
[23]. Extensive experiments on the datasets show that our
VR-Net outperforms data-driven approaches with respect to
registration accuracy while retains the fast inference speed of
deep networks. However, we note that our VR-Net is based
on an intensity constancy assumption which may not work
for medical images with contrast variances or from different
modalities. Collectively, our main contributions are:

• We propose VR-Net for image registration. To our knowl-
edge, this is the first model-driven deep learning approach
tailored for this task. Such a network remedies the afore-
mentioned limitations in both iterative methods and data-
driven approaches and therefore paves a new way to solve
the challenging task of image registration.

• VR-Net embeds the mathematical structure from the
minimization of a generic variational model into a neural
network. The network mapping function f therefore
inherits prior knowledge from the variational model,
whilst maintaining the data efficiency of iterative methods
and retaining the fast inference speed of data-driven
registration methods. As such, it has the advantages from
both communities and is shown to exceed state-of-the-art
data-driven registration methods in terms of Dice score
and Hausdorf distance on both 2D and 3D datasets.

• For iterative variational approaches to perform well for
individual image pairs, one often needs to define a
suitable regularization and then tune the corresponding
regularization parameter λ. Instead, our VR-Net is trained
with a global regularization parameter. This enables the
model to effectively learn the regularization term and
the values of λ from data, which removes the need
to tune on individual image pairs and thus results in
a more generalizable model compared with its iterative
counterparts.

II. RELATED WORKS

A. Iterative Approaches

Image registration using iterative approaches is performed
for each image pair via iterative optimization of the
transformation model parameters under both image intensity
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Fig. 1. VR-Net architecture. WL, ICL, and GDL denote the warping layer, intensity consistency layer, and generalized denoising layer, respectively.
These layers (detailed in Fig. 2) are designed as per the minimization of a generic variational model for image registration. The cascade number is
controlled by Nwarp × Niter, which mimics the iterative process of minimization.

and regularization constraints. Affine transformations are typ-
ically first applied to handle global transformations such as
rotation, translation, shearing and scaling. This is followed
by a deformable transformation which has more degrees
of freedom as well as higher capability to describe local
deformations. There is a wide range of classical variational
methods to account for local deformations such as diffusion
models [4], total variation models [7], [8], fluid models [5],
[6], elastic models [24]–[26], biharmonic (linear curvature)
models [27], [28], mean curvature models [29], [30], optical
flow models [3], [31], [32], fractional-order variation mod-
els [33], [34], non-local graph models [35]–[37], etc. The
free-form deformation (FFD) methods based on B-splines
model [38], [39] are able to accurately model global and local
deformations with fewer degrees of freedom parameterized by
control points.

B. Data-Driven Approaches

Recently, researchers have started to shift their interests to
unsupervised data-driven methods for medical image registra-
tion. These learning-based methods are normally trained with a
large amount of paired images. By extending the spatial trans-
former network [40], Balakrishnan et al. [9], [41] proposed
the VoxelMorph and evaluated the method on brain MRI image
registration. Qin et al. [12] proposed a framework for joint
registration and segmentation on cardiac MRI sequences, with
their registration branch based on a Siamese-style, recurrent
multi-scale network. De Vos et al. [1] proposed a multi-stage,
coarse-to-fine network (termed DLIR) for parametric registra-
tion. DLIR has two types of CNNs that account for global
and local transformations, respectively. The global network
estimates the affine transformation and the local networks
predict the displacements parameterized by the B-spline con-
trol points. The work [42] proposed by Guo et al. is also a

coarse-to-fine, multi-stage registration framework. However,
this method estimates only rigid transformations while our
method predicts dense displacements and performs nonrigid
registration. Zhao et al. [11] proposed a deep recursive cascade
architecture, termed RC-Net. By cascading several base-nets,
RC-Net achieved significant gains over VoxelMorph [9] on
both liver and brain registration tasks. Similar to RC-Net,
the proposed VR-Net also uses a cascaded, end-to-end train-
able network architecture. Within each cascade of VR-Net,
however, we solve a point-wise, closed-form optimization
problem induced by minimizing a generic variational model,
which is a major difference from other recursive [11] or
multi-stage [1], [42] networks.

C. Model-Driven Approaches

The authors in [16], [43], [44] studied trainable variational
networks to address supervised, linear image restoration and
reconstruction problems, while we tackle an unsupervised,
nonlinear image registration problem. Their methods are based
on proximal gradient descent, and they learn the regularization
term based on the Field of Experts (FoE) [45]. The nonlinearity
(derivative of the potential function in the regularization) in
their method is imposed by the radial basis kernels. The
optimization of their method is done through the specialized
inertial incremental proximal method (IIPG), which is not
implemented in a standard deep learning framework (e.g.
Pytorch) and therefore may be difficult to generalize to other
problems. In contrast, our network is based on a linearized
variable splitting method, one advantage of which is that
we can impose an exact data term (due to its closed-form
solution) in each cascade which cannot be done by gradient-
based methods. Our regularization is formulated as CNNs,
where the nonlinearity is imposed by the activation functions
(such as ReLU) and the parameters are optimized by Adam
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in a standard deep learning framework. There also exist
works [15], [17], [18], [46], [47] that have explored variational
formulations in the deep learning framework. However, instead
of image registration, they were used either for image restora-
tion and reconstruction or for video understanding. Recently,
Blendowski et al. [48] proposed a supervised iterative descent
algorithm (SUITS) for multi-modal image registration, which
has similar ingredients to our method. SUITS uses a CNN
to extract image features, which are then plugged into the
Horn and Schunck (HS) model [49] to compute displacements.
In other words, they need to solve an iterative model within
the network each time when new displacements are required.
This method can be expensive because (1) the HS model needs
to have many data terms (12 in their paper) in order to align
all extracted features; (2) solving the HS model itself is costly
and requires iterations; and (3) they need to solve the HS
model many times within the network. In contrast, we do not
need to iteratively solve any optimization model within our
network. Instead, we use the iterative process for optimization
only to guide the design of network architecture. Moreover,
unlike [48] which uses an algebraic multigrid solver (AMG) to
solve the linear system of equations, all subproblems (network
layers) in our method have closed-form, point-wise solutions.

III. GENERIC VARIATIONAL METHOD

In this section, we study a more general variational model
[3], [49] for image registration, which is given by

min
u

1

s

�
�

|I1(x + u(x)) − I0(x)|sdx + λR (u(x)) , (2)

where the variables in this formulation have the same meaning
as in Eq. (1). The objective is to find the optimal deformation
u∗(x) : (� ⊆ R

d ) → R
d , that minimizes the formulation.

Within the data term, s = 1 corresponds to L1 estimation
that is robust to outliers, while s = 2 gives the estimation
based on the sum of squared difference. The second term is
a generic regularization term, which imposes a smoothness
constraint on the deformation. The hyper-parameter λ controls
the smoothness of the solution. However, it is non-trivial to
select both regularization term and λ optimally.

In the data term, we notice that the non-linearity in the
function I1(x + u) with respect to u poses a challenge to opti-
mize Eq. (2). To benefit from closed-form solutions, we use
the Gauss–Newton algorithm [3], [50] to handle Eq. (2).
By employing the first-order Taylor expansion at uω, we end
up with solving the following alternative problem:

I1 (x + u) = I1
�
x + uω

� + �∇ I1(x + uω), u − uω� (3a)

uω+1 = arg minu
1

s

�
�

|ρ(u)|sd x + λR (u) , (3b)

where

ρ(u) = I1
�
x + uω

� + �∇ I1(x + uω), u − uω� − I0(x). (4)

In Eq. (3a), ∇ is the gradient operator, ∇ I1 represents partial
derivatives of I1, �·, ·� denotes the inner product and ω denotes
the ωth iteration. The linearized version of Eq. (2), seen in
Eq. (3b), must to be solved iteratively. As the data term in

Eq. (3b) is in a linear, convex form, one can derive a closed-
form solution. Of note, to solve Eq. (2) approximately, one
needs to iterate between Eq. (3a) and Eq. (3b), meaning that
there exist two loops in the resulting numerical implementa-
tion.

The regularization R (u) has many choices depending on
what the final deformation u∗ looks like, such as piecewise
smooth, piecewise constant, etc. A widely used choice is the
Total Variation (TV) [3], [8], [51], which is a powerful regular-
ization that allows discontinuities in the resulting deformation.
However, a major issue for those hand-crafted regularization is
that they may not be optimal for more complex, task-specific
applications. To circumvent these, we propose an end-to-end
trainable VR-Net detailed in Section IV-A.

A. Variable Splitting

To design an appropriate VR-Net, we first adopt a variable
splitting scheme [3], [17], [51] to minimize the linearized
variational model Eq. (3b). Specifically, we introduce an
auxiliary splitting variable v : (� ⊆ R

d ) → R
d , converting

Eq. (3b) into the equivalent constrained minimization problem

min
u,v

1

s

�
�

|ρ(u)|sd x + λR(v) s.t . u = v.

The introduction of the constraint u = v above decouples u
in the regularization term from the data term, therefore a multi-
channel denoising problem can be explicitly constructed and
a closed-form, point-wise solution can be derived. Using the
penalty function method, we then add the constraint back into
the model and minimize the single problem

min
u,v

1

s

�
�

|ρ(u)|sd x + λR(v) + θ

2

�
�

|v − u|2d x,

where θ is the introduced penalty weight. To solve the multi-
variable minimization problem, one needs to minimize it with
respect to u and v separately.

1) u-subproblem is a linear problem and handled by con-
sidering the following minimization problem

uk+1 = argmin
u

1

s

�
�

|ρ(u)|sd x + θ

2

�
�

|vk − u|2d x,

the solution of which depends on the order of s. In the case
of s = 1, the solution is given by the following thresholding
equation

uk+1 = vk − ẑ

max
���ẑ�� , 1

� ∇ I1

θ
, (5)

where ẑ = θρ(vk)/(|∇ I1|2 + �) and � is a small positive value
added to avoid division by zero to prevent vanishing gradients
in the image. In Appendix A we develop a novel primal-dual
method to derive this solution (5). Our new derivation allows
the proposed method to easily adapt to vector images which
usually appear in data terms that use image patch or (higher-
order) gradient information [52], [53].

In the case of s = 2, the respective problem is differentiable
and we can derive the following Sherman–Morrison formula
[54], [55] by differentiating this subproblem with respect to u

(JJT + θ1)(u − uω) = θ(vk − uω) − J(I1 − I0), (6)
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where JJT (where J = ∇ I1) is the rank-1 outer product and 1

is an identity matrix. Due to the identity matrix, the Sherman–
Morrison formula will lead to a close-form, point-wise solution
to uk+1. In Appendix B, we present detailed derivations in both
2D and 3D.

2) v-subproblem is handled by considering the following
minimization problem

vk+1 = argmin
v

λR(v) + θ

2

�
�

|v − uk+1|2d x. (7)

Given a known uk+1, this problem essentially is a denoising
problem with the generic regularization R(v). Note that we
assume the noise here is additive and follows a Gaussian
distribution. On the other hand, if the regularization R(v) is
TV, then it is a TV denoising problem, as in Zach’s paper [3].

Putting these derivations together, we have Algorithm 1 to
minimize Eq. (2) using variable splitting. Since Taylor expan-
sion is used to linearize the non-linear function, Eq. (3a)
holds only if the resulting deformation u∗ is small. As such,
we adopt an extra war ping operation (via uω) in Algorithm 1,
i.e., Iω

1 = I1(x + uω). With war ping, we can break down a
large deformation into Nwarp small ones, each of which can
be solved iteratively and optimally. The total iterations for the
algorithm is Nwarp × Niter .

Algorithm 1 VS for Generic Variational Registration Model
1: Inputs: I0, I1 and (θ, λ, Nwarp , Niter ).
2: Initialize: u1 and v1.
3: for ω = 1 : Nwarp do � # Taylor expansions
4: Iω

1 = war ping(I1, uω)
5: while k < Niter do � # iterations
6: update uk+1 via (5), (16) or (17) with I1 = Iω

1
7: vk+1 = denoiser(uk+1)
8: end while
9: uω = uk+1

10: end for
11: return u∗ = uω � # return final solution

IV. LEARNING A VARIATIONAL REGISTRATION NETWORK

So far, we have shown how the variable splitting scheme can
be derived to tackle the generic variational registration model.
We first handle the original problem Eq. (2) with the Gauss-
Newton method. For the resulting linearized minimization
problem Eq. (3b) we have two sub-problems, one with a
closed-form, point-wise solution for either choice of the s and
one a denoising problem with R(u). As of yet, we have not
defined the exact form of denoiser in Algorithm 1. In the
following section, we will detail the full VR-Net architecture,
and show how a residual CNN is used as our denoiser to
solve the second denoising sub-problem.

A. Network Architecture

We construct the proposed VR-Net by unrolling the iterative
procedure in Algorithm 1. Fig. 1 depicts the resulting network
architecture. There are two types of cascade in the architecture

to learn a large displacement: (1) cascade-i ter indicated by
k ∈ {1, . . . , Niter }, stands for the inner loop in Algorithm 1;
(2) cascade-war p indicated by ω ∈ {1, . . . , Nwarp}, corre-
sponds to the outer loop in Algorithm 1. Note that cascade-
war p contains multiple nested cascade-i ters. In Fig. 2,
we show the three computational layers contained in the
network, which are the warping layer (WL), the intensity
consistency layer (ICL) and the generalized denoising layer
(GDL). They respectively correspond to Step 4, 6 and 7 in
Algorithm 1.

Warping layer is achieved by using a bilinear interpola-
tion for 2D images, following the spatial transformer net-
works [40]. Recall that the war ping operation is defined in
Algorithm 1 by Iω

1 = I1(x + uω), where uω is the estimated
displacement. The bilinear interpolation is continuous and
piecewise smooth, and the partial gradients with respect to
uω can be derived as in [40]. The 2D warping layer can be
easily extended to transform 3D volumes, as in [41]. In Fig. 2,
we show the computational graph of this layer, which takes
uω and I1 as the inputs and outputs the warped image Iω

1 .
Intensity consistency layer is crucial as it effectively

imposes intensity consistency between the warped image (Iw
1 )

and the target image (I0) such that the data term in Eq. (2)
can be minimized. Fig. 2 presents the computational graph
of this layer. Specifically, the input Iw

1 from the upstream
warping layer, concurrently with I0, vk , uω and θ , are passed
through Eq. (5), (16) or (17) to produce uk+1, which then
feeds the downstream generalized denoising layer. Note that
the calculations in this layer are both computationally efficient
and numerically accurate thanks to the existence of point-wise,
analytical solutions from Eq. (5), (16) or (17). The penalty
weight θ is often manually selected in iterative methods,
however in this paper we instead make it a learnable parameter.

Generalized denoising layer is a residual U-Net that explic-
itly defines denoiser in Algorithm 1. As illustrated in Fig. 2,
we intend to denoise a two-channel displacement uk+1 with
the residual U-Net and produce its denoised version vk+1

for ICL in next iteration. Since the input and output of ICL
and GDL are both deformations, it is natural that we can
adopt a residual connection between two adjacent cascades.
As the generalized denoising layer represents the denoising
subproblem Eq. (7), it implicitly absorbs the hyper-parameters
λ and θ and thus there is no need to tune them manually. Note
that while we use a residual U-Net as the backbone here, our
setup is generic and therefore allows for the incorporation of
more advanced denoising CNN architectures.

The function in Eq. (5) needs special attention when imple-
mented as a neural layer. Although it is a continuous and
piecewise smooth function, it is non-differentiable. As such,
the concept of sub-gradients must be used during network
back-propagation. As a result, this gives us a sub-differentiable
mechanism with respect to network parameters, which allows
loss gradients to flow back not only to the GDL and WL but
also to the ICL.

B. Network Loss and Parameterizations

1) Network Loss: While the design of VR-Net architecture
follows the philosophy of conventional optimization for itera-
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Fig. 2. Computational graph of each layer in VR-Net. ICL and GDL are designed based on solutions of sub-problems resulting from applying variable
splitting to the original image registration model (2).

tive methods, training the network parameters is another opti-
mization process, for which a loss function must be explicitly
formulated. Due to the absence of ground truth transformations
in medical imaging, we adopt an unsupervised loss function,
using the floating image I1, the reference image I0 and the
predicted deformation u. The loss L(�) is

min
�

1

N

N�
i=1


I i
1(x + ui (�)) − I i

0(x)
1 + α

N

N�
i=1


∇ui (�)
2
2,

(8)

where N is the number of training image pairs, � are the
network parameters to be learned and α is a hyper-parameter
balancing the two losses. Note that the first loss defines
the sum of absolute differences (SAD) between the warped
images and the reference images and the second loss defines
the smoothness on the resulting displacements. The graph
representation of the two loss functions is detailed in Fig. 2.

Despite the model-driven components of our VR-Net,
the method is essentially a deep learning approach so it also
requires a smoothness parameter α that regularizes the learned
displacements for the whole dataset. In contrast to the manual
tuning of θ in Eq. (5) and (6) which is required for each test
pair image in traditional iterative methods, this smoothness
parameter α is only tuned in the training set and used for
inference without further optimization. Note that α is not
necessary if we instead use the SSD loss between predicted
and ground-truth deformations as our loss function. As shown
in the Fig. 1, we do not evaluate the loss function (8) at every
cascade and only use it once at the very end of the VR-Net.

2) Parameterizations: The network learnable parameters �
include both the residual U-Net parameters W in GDL layers
and the penalty weights θ in the ICLs. Recall that in VR-Net
(see Fig. 1) we have cascade-i ter and cascade-war p, and
therefore each GDL and ICL layer has a set of parameters W
and θ , respectively. We experimented with two parameteriza-
tion settings: �1 = {W, θ} and �2 = {{Wk,ω, θk,ω}Niter

k=1 }Nwarp
ω=1 .

For �1, we let the parameters W and θ respectively be shared
by the DLs and the ICLs across cascade-war p and cascade-
i ter . In �2, the parameters are not shared in either cascade-
i ter or cascade-war p, meaning that each layer (GDL or ICL)

has its own learnable parameter. For both parameterizations we
experimented with, backpropagation is employed to minimize
the loss with respect to the network parameters � in an end-
to-end fashion.

C. Initialization

While data-driven methods take image pairs as input and
directly output the estimated deformations, we need an initial
displacement as input of VR-Net as stated in Step 2 of
Algorithm 1. The initial displacement is then refined by
the iterative process. In this paper, we proposed 3 different
initialization strategies. The first strategy is to initialize the
u1 and v1 with zeros, which is used in the original TV-L1
paper [3]. The second strategy is using the Gaussian noise as
initialization. However, initializing u1 and v1 with zeros or
noise is not necessarily the optimal choice. Inspired by [46],
we propose to learn the initialization from the data by concate-
nating a U-Net prior to the first WL. Note that the additional
concatenated U-Net is not pre-trained. It is a part of the VR-
Net and its weights are updated along with the whole VR-Net
during the training process.

We evaluate the three different initialization strategies
in V-D and show that the registration performance benefits
from making the initialization learnable.

V. EXPERIMENTAL RESULTS

In this section, we introduce the datasets and quantitative
metrics used for experiments. Then we describe the imple-
mentation details of the proposed method as well as ablation
studies using different configurations. Finally, we compare the
proposed VR-Net with state-of-the-art methods, including both
iterative methods and data-driven approaches.

A. Datasets and Quantitative Metrics

1) 2D Datasets: We evaluate the proposed VR-Net on the
UK Biobank dataset [21] and the ACDC dataset [22]. The
UK Biobank [21] is a large scale cardiac MRI image dataset
designed for cohort studies on 100,000 subjects. MRI scans
in this dataset were acquired from healthy volunteers by
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using the same equipment and protocols, and the in-plane and
through-plane resolutions are 1.8mm and 10mm, respectively.
We randomly select 220 subjects and split them into 100,
20, and 100 for training, validation, and testing, respectively.
The ACDC dataset [22] was created from real clinical exams.
Acquisitions were obtained over a 6 year period with two
MRI scanners of different magnetic strengths. The dataset
is composed of 150 patients evenly divided into 5 types
of pathology. We select the 100 subjects that have ground
truth segmentation masks for experiments. We split these
subjects into 40, 10, and 50 for training, validation, and
testing, respectively. Since the in-plane resolution varies from
1.34 to 1.68mm, we resample all the images to 1.8mm before
experiments. For both datasets, we perform experiments on
only basal, mid-ventricular, and apical image slices.

2) 3D Dataset: The 3D CMR dataset [23] used in our
experiments consists of 220 pairs of 3D high-resolution (HR)
cardiac MRI images corresponding to the end diastolic (ED)
and end systolic (ES) frames of the cardiac cycle. HR imaging
requires only one single breath-hold and therefore introduces
no inter-slice shift artifacts. All images are resampled to
1.2 × 1.2 × 1.2mm3 resolution and cropped or padded to
matrix size 128 × 128 × 96. To train comparative deep learn-
ing methods and tune hyperparameters in different methods,
the dataset is split into 100/20/100 corresponding to training,
validation, and test sets. We report final quantitative results on
the test set only.

Due to the absence of ground truth deformations for these
datasets, we evaluate the performance of different methods
using the segmentation masks of left ventricle cavity (LV),
left ventricle myocardium (Myo), and right ventricle cavity
(RV). Specifically, we calculate the deformation between ES
and ED frames and then warp the ES segmentation using the
deformation. Based on the warped ES segmentation and the
ground truth ED segmentation, we compute Dice score and
Hausdorff distance (HD) score [56]. The Dice score varies
from 0 to 1, with higher values corresponding to a better
match. The HD is measured on the outer contour of each
anatomical structure: LV, Myo, and RV. It is on an open-ended
scale, with smaller values implying a better result.

B. Implementation Details

We implement the proposed 2D VR-Net with U-Net [57] as
the backbone for all generalized denoising layers. We used the
original U-Net architecture in [57] and no further optimization
of the architecture is performed. As the input and output
of such layers are displacements, we also apply a residual
connection to the U-Net. To numerically discretize the partial
derivatives ∇ I1 in Eq. (5) and Eq. (6) and ∇u in the loss
Eq. (8), the central finite difference method is adopted. To train
the 2D VR-Net, the batch size is set to 10 pairs of images.
α in Eq. (8) is selected using the grid-search strategy on the
validation set and is set to 0.1 for UK Biobank and 0.05 for
ACDC. For training, we use the basal, mid-ventricular, and
apical image slices in all frames from all subjects in the
training set. During inference, we evaluate the 2D VR-Net
and other comparative approaches using the three slices at the
ED and ES phases from all subjects in the test set. This is

because we only have manual segmentation masks at the two
phases. Extending the 2D VR-Net to 3D is straightforward.
The major difference between the 2D and 3D VR-Net is the
generalized denoising layer, for 3D, we adopt a lighter 5-level
hierarchical U-shape network from [58] as the backbone. The
training batch size of 3D VR-Net is set to 2. α in Eq. (8) is
selected to be 0.0001 using the validation set for the 3D CMR
dataset.

Both 2D and 3D VR-Nets are implemented with
Pytorch [59] and trained using a GeForce 1080 Ti GPU
with 11GB RAM. An Adam optimizer [60] with two beta
values of 0.9 and 0.999 is used and the initial learning rate
is set 0.0001. Note that we train our VR-Net using each
dataset separately. For UK Biobank, the maximum itera-
tions are 50,000 and the learning rate is gradually reduced
after 25,000 iterations. For ACDC, the maximum iterations
are 20,000 and the learning rate is gradually reduced after
10,000 iterations. For the 3D CMR dataset, the maximum
iterations are 30,000 and the learning rate is fixed during
training. Due to the limitation of GPU memory, the maximum
cascade number we could afford is 6 and 2 for 2D and 3D
VR-Net, respectively. VR-Net is memory intensive as it has
multiple cascaded GDL, however, it is very efficient in terms
of speed during inference, as listed in Section V-E. Note the
memory dependencies can be reduced by using lighter CNN
architectures in GDL.

C. Ablation Studies

In this section, we test different configurations for VR-
Net. Specifically, we explore the impact of using different
data terms, denoising networks, parameterizations and varying
numbers of cascades. For simplicity, we use shorthand nota-
tions to represent different configurations. For example, R-L1-
3 × 2 indicates that we use the U-Net with residual connection,
Eq. (5) (L1 data term), Nwarp = 3 and Niter = 2 in VR-
Net. U-L2-6 × 1 indicates that we use the U-Net without
residual connection, Eq. (6) (L2 data term), Nwarp = 6 and
Niter = 1.

We first compare the results obtained by using different
cascades in VR-Net. From Table I, we observe that the best
results almost all come from using 6 cascades (either 3 × 2 or
6 × 1), indicating that increasing cascade number improves the
performance. On the UK Biobank, the best result is achieved
by R-L2-6 × 1 (0.804 Dice and 10.26 HD), while on ACDC
the best result is achieved by R-L1-3 × 2 (0.873 Dice and
6.33 HD). When comparing the best performance among
different data terms, L1 performs worse than L2 on UK
Biobank, while on ACDC L1 is better. This suggests that
the proposed VR-Net is robust to different data terms. Next,
we compare the results obtained by using different denoising
networks, and we notice a tiny improvement when a residual
connection is applied.

In Fig. 3a we show the performance of VR-Net on UK
Biobank with two different parameterizations: �1 and �2.
From these boxplots, we see that using �2 performs better on
RV and Myo anatomical structures, while on RV using �1 is
better. The averaged results (last two columns) on the three
anatomical regions indicate a similar performance between
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TABLE I
COMPARISON OF IMAGE REGISTRATION PERFORMANCE ON TWO DATASETS USING DIFFERENT CONFIGURATIONS FOR THE PROPOSED VR-NET.

DICE (HD) SCORE IS COMPUTED BY AVERAGING THAT OF LV, MYO AND RV AT THE BASAL, MID-VENTRICULAR AND APICAL IMAGE SLICES

FROM ALL SUBJECTS IN THE TEST SET. MEAN AND STANDARD DEVIATION (IN PARENTHESIS) ARE REPORTED

Fig. 3. (a): Dice scores of R-L2-6 × 1 using the two parameterizations in Sec. IV-B on the UK Biobank. (b) Impact of using different α in terms of
Hausdorff distance on the three datasets. (c): Comparing VR-Net and RC-Net [11] using a different number of cascades on the ACDC dataset.

the two parameterizations. Note that the number of network
parameters in �1 is 1/6 of that in �2.

While the original regularization weight λ is absorbed in the
v-subproblem to avoid manual choice, by using the training
loss in Eq. (8) we do introduce another parameter α. However,
tuning α is based on the whole dataset and we tune it only dur-
ing training. We presented a curve plot that illustrates how dif-
ferent α affect the registration accuracy (as shown in Fig. 3b).
Specifically, we used five different values of α to train the
proposed VR-Net five times on three datasets, i.e., αU K B B =
{1, 0.5, 0.1, 0.05, 0}, αAC DC = {0.5, 0.1, 0.05, 0.005, 0}, and
α3DC M R = {0.01, 0.001, 0.0001, 0.00001, 0}. We then plot
their registration accuracy (in terms of Hausdorff Distance)
on each dataset as α varies. As suggested by the curve plot,
the optimal values of α for UK Biobank, ACDC, and 3D CMR
datasets are 0.1, 0.05, and 0.0001, respectively.

D. Initialization Strategies

In Table II, we explore the performance of VR-Net using
different initialization approaches on the UK Biobank dataset.
As is evident in this table, with zeros or noises as the initial
displacements, the Dice results of VR-Net dropped by 6.0%
and 6.4%, respectively, and the HD results dropped by 1.59mm
and 1.42mm, respectively. These results suggest that making
the initialization learnable is crucial as (1) registration is
nonconvex and its solution depends on initialization, and (2)
our network builds on iterative optimization methods and
thus also relies on initialization. Furthermore, our VR-Net is

TABLE II
PERFORMANCE OF VR-NET ON BIOBANK USING DIFFERENT

INITIALIZATION. NOTE THE U-NET IS NOT PRETRAINED,
IT IS ALSO A LEARNABLE LAYER IN THE WHOLE VR-NET

derived using the Taylor linearization and as such computes
only a small displacement in each iteration. When we initialize
the input displacement with noise or zeros, 6 iterations are not
sufficient to perform a good registration.

E. Comparison With State-of-the-Art

In this section, we compare our VR-Net with iterative
methods (i.e. FFD [38] and TV-L1 [3]) and data-driven deep
learning methods (i.e. VoxelMorph [9], [41], Siamese net-
work [12], [19] and RC-Net [11]) on the UK Biobank, ACDC
and 3D CMR dataset. An overview of the Dice and HD scores
of different methods can be found in the boxplots in Fig. 5.

1) 2D Methods: For FFD, we use the implementation in
MIRTK [38], where we chose the SSD similarity with bend-
ing energy regularisation. We use a 3-level multi-resolution
scheme and set the spacing of B-spline control points on the
highest resolution to 8mm. For TV-L1, which uses the L1
data term and the total variation regularization, we implement
its ADMM solver, in which we use a similar three-level
multi-scale strategy for the minimization. We implement TV-
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TABLE III
COMPARISON OF IMAGE REGISTRATION PERFORMANCE USING DIFFERENT METHODS ON UK BIOBANK. ‘AVG’ MEANS THAT DICE (HD) IS
COMPUTED BY AVERAGING THAT OF LV, MYO AND RV OF ALL SUBJECTS IN THE TEST SET. HERE MEAN AND STANDARD DEVIATION (IN

PARENTHESIS) ARE REPORTED. ‘UNREG’ STANDS FOR UNREGISTERED AND #×RC-NET THE NUMBER OF CASCADES USED IN RC-NET

TABLE IV
COMPARISON OF IMAGE REGISTRATION PERFORMANCE USING DIFFERENT METHODS ON THE ACDC DATASET

L1 using the same variable splitting and therefore its overall
iterative structure is very similar to our VR-Net. However,
because TV-L1 is cheap to iterate, we can set sufficient
numbers of inner iterations (associated with variable splitting)
and outer iterations (associated with Taylor expansions) to
compute the final deformation. In other words, we tune TV-L1
to its maximum capability to compete with our method.
The regularization weights in the two methods are tuned to
maximize the accuracy performance on validation sets. For
the data-driven methods, we first compare our VR-Net with
VoxelMorph [41] which we re-implement for 2D registration.
We also compare VR-Net with the Siamese network regular-
ized by the approximated Huber loss [12], [19]. Lastly, for the
recursive cascade network (RC-Net) [11], which used a 3D
U-Net-like architecture in a cascade fashion, we re-implement
a 2D version. Overall, the backbone of both VoxelMorph and
RC-Net is a U-Net and the loss functions (without segmen-
tation loss) are similar to ours. Note that all the compared
data-driven methods (including Siamese, VoxelMorph, and
RC-Net) are only trained with the training data and no test-
time (instance) optimization is adopted. The hyper-parameters
of all data-driven methods are tuned individually according to
the validation set for a fair comparison.

2) 3D Methods: We again use a three-level pyramid scheme
with SSD similarity and bending energy regularisation for
FFD, tuning control point spacing on the validation set. Next,
we compare our VR-Net with the diffeomorphic Demons [55]
implemented in SimpleITK [61]. For Demons, we use a three-
level pyramid scheme, and optimize the number of itera-
tions and smoothing parameter on the validation set. Finally,

we compare with the official ANTs SyN implementation [62]
with SSD similarity and a four-level pyramid scheme. Hyper-
parameters in ANTs SyN such as similarity, number of pyra-
mid levels, and number of iterations in each level are tuned
on the whole validation set.

In Table III and IV, we show the quantitative results
obtained by using different methods on UK Biobank and
ACDC. In the tables, one can see that VR-Net outperforms
iterative methods and data-driven methods on both datasets
for almost all anatomical structures. On UK Biobank, RC-Net
achieves the best results on RV in terms of both Dice and
HD, which are 0.005 and 0.42mm higher than those obtained
by our best configuration (R-L2-6 × 1). However, in terms
of Dice, VR-Net achieves 0.948 on LV and 0.764 on Myo,
outperforming 3 × RC-Net by 0.004 and by 0.028, respec-
tively. In terms of HD for LV and Myo, our VR-Net improves
3 × RC-Net from 4.28mm to 3.90mm and from 7.39mm
to 6.49mm, respectively. On average, the proposed VR-Net
achieves a better Dice and HD score than 3 × RC-Net, making
our VR-Net the best method on this dataset.

On ACDC, the proposed VR-Net with the configuration of
R-L1-3 × 2 outperforms all other methods across all anatom-
ical structures. While 2 × RC-Net also obtains comparable
results, one can notice that its performance drops rapidly with
more cascades. To visualize this, we plotted the average Dice
scores of both RC-Net and VR-Net versus the number of
cascades in Fig. 3c on this dataset. As is evident from this
figure, there is a sharp decrease in the performance of RC-
Net, which is due to RC-Net overfits the small training set
of 40 subjects. In contrast, VR-Net performs constantly well
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TABLE V
COMPARISON OF IMAGE REGISTRATION PERFORMANCE USING DIFFERENT METHODS ON THE 3D CMR DATASET

Fig. 4. Comparing visual results obtained by different registration methods on the ACDC and 3D CMR datasets. The 1st column includes ED image,
ED mask, ES image, ES mask, and absolute difference between ES image and the ED image. Excluding the 1st column, for (a) ACDC, from left to
right: FFD, TV-L1, Siamese Net, VoxelMorph, RC-Net, and VR-Net results, respectively, for (b) 3D CMR, from left to right: Demons, ANTs SyN, FFD,
VoxelMorph, RC-Net, and VR-Net results, respectively. From top to bottom: warped ES images, warped ES masks (with ground truth mask shown
in green contours), estimated deformations (shown in HSV and grid), the Jacobian map, and absolute differences between warped ES images and
the ground truth ED image, respectively.

using an increasing number of cascades, demonstrating its
data-efficiency. This is attributable to the integration of the
iterative variational model (prior knowledge) into the VR-Net.

On the 3D CMR dataset, as listed in Table V, FFD out-
performs all compared methods on the Myo and RV, and
achieves the highest average Dice score, i.e. 0.739. Although
the average Dice of our VR-Net (U-L1-2 × 1) is lower than
that of FFD with 0.11 margin, the average HD score is higher
than that of FFD. Furthermore, the proposed VR-Net achieves
both the highest Dice and HD score among the compared data-
driven methods.

We also listed the percentage of negative Jacobian determi-
nant values as well as the gradient magnitude of the Jacobian
determinant of all compared methods on both the UK Biobank
and ACDC datasets. From Table III and IV, we can see that
although VR-Net generates foldings in deformation, it pro-
duces fewer than RC-Net with the same number of cascades,
i.e. 0.38% of R-L2-6 × 1 and 1.00% of 7 × RC-Net on the UK
Biobank, and 0.32% of R-L1-3 × 2 and 2.17% of 7 × RC-Net
on ACDC. On the 3D CMR dataset, as shown in Table V, VR-
Net (0.24%) again outperforms the 3 × RC-Net (0.49%) as

well as VoxelMorph (0.75%), however, it is lower than the
2 × RC-Net (0.11%). Overall, VR-Net cannot guarantee zero
foldings in estimated deformations, it produces deformations
comparable with VoxelMorph and RC-Net.

In Table VI, we list the runtime of different methods.
Although we adopt the mathematical structure of a varia-
tional model, our VR-Net is very close to the purely data-
driven deep learning methods as the solutions are point-wise
closed-form, and it is much faster than traditional iterative
methods. The runtime is measured and averaged over 100 test
subjects.

Lastly, in Fig. 4, we compare the visual results of different
methods by showing two image registration examples from
the ACDC and 3D CMR datasets. On the ACDC, as can
be seen, FFD (2nd column), which used L2 regularization,
over-smooths the displacement, the warped ES images are
also over-smoothed around the Myo/LV area resulting in the
high absolute differences. In contrast, TV-L1 (3rd column),
which used L1 regularization, preserves edges in the resulting
displacements. However, the shape of RV warped by TV-L1
is not very smooth. This side effect also can be seen in
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Fig. 5. Boxplot illustration of Dice (top row) and HD (bottom row) results obtained by different registration methods on the UK Biobank (left), ACDC
(middle), and the 3D CMR (right) datasets. The proposed VR-Net outperforms all compared methods on the UK Biobank and ACDC datasets.
Although the Dice of VR-Net is lower than that of FFD on the 3D CMR dataset, it achieves the best HD score.

the Siamese network result, and the Siamese network also
produces a very high difference map. The displacement results
of VoxelMorph, RC-Net, and VR-Net are smooth and look
more natural. But the absolute difference map of VoxelMorph
shows the less accurate registration than VR-Net. Additionally,
the Jacobian map of RC-Net has more foldings than VR-
Net(highlighted in green). The warped Myo of VoxelMorph
from ACDC has unsmooth shape. The unsmooth shape can
also be found in the warped masks of RC-Net. In terms of
similarity, the result of VR-Net is the closest one to the ground
truth, visually illustrating that the method is more accurate
for image warping. On the 3D CMR, Demons and ANTs
SyN do not have any negative Jacobians (i.e. no green area
in Jacobian maps), due to diffeomorphsims. However, SyN
produces a very high absolute difference map. Though the
warped ES mask of FFD has a very good overlapping with
the ground truth ED mask, its displacement has many foldings
(shown in the red grid). The foldings of displacements can also
be seen in the VoxelMorph, RC-Net, and VR-Net, however,
the warped ES image of VR-Net is closer to the ground truth
ED image. The warped ES images of both VoxelMorph and
RC-Net have distorted regions on the upper right, resulting in
high difference maps on this area.

F. Discussion

1) Relationship With VoxelMorph and RC-Net: In the pro-
posed VR-Net, we use an additional U-Net to learn initial
displacements. We emphasize here that this U-Net is not
pre-trained and instead it is part of the VR-Net, which is
trained end-to-end. In this case, without any DL, WL, or ICL
layers this initial U-Net alone is essentially VoxelMorph,
the performance of which is inferior to our VR-Net by a large
margin as shown in Tables III, IV and V. If we recursively use
the U-Net for multiple times without using other subsequent
layers (such as ICL/GDL), then the model is equivalent to the
RC-Net, the performance of which is worse than our VR-Net
as shown in Table III, IV and V.

2) Generalized Denoising Layers: To understand how the
GDL layer is functioning within the network, in Fig. 6 we

TABLE VI
RUNTIMES OF DIFFERENT METHODS. THE RUNTIMES ARE MEASURED

AND AVERAGED OVER 100 TEST SUBJECTS

illustrate the output of this layer after each cascade of the
VR-Net using two different setups. Specifically, we use R-L2-
6 × 1 using both the U-Net and random noise initialization
from Table II. For the U-Net initialization, we add a Gaussian
noise to the input displacement to demonstrate whether this
layer can produce any smoothing effect. As shown in the top
two rows of Fig. 6, the deformation becomes gradually smooth
as cascades proceed. The deformation also gets increasingly
smooth for the random noise initialization. This visualization
suggests that our GDL has the denoising effect. However,
the capability of GDL is beyond denoising alone. As shown in
the last two rows in Fig. 6, this layer can turn a pure random
noise into deformation, indicating its capability of inducing
smoothness whilst going beyond denoising and contributing
to the deformation itself.

3) Identifying the Optimal Structure: In Table I, we list
24 configurations of VR-Net, along with proposed two para-
meterizations of �1 and �2. Empirically searching for the
best structure can be computationally expensive. What is the
strategy to efficiently determine the combination? We observe
that the best results almost all come from VR-Net with
6 cascades (maximum we can afford) in 2D datasets, indicating
that increasing the cascade number improves performance.
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Fig. 6. Visualizing deformation in each cascade (after GDL) using noise
corrupted deformation (top) and random noise (bottom) as initialization.
Top two rows show a noise corrupted deformation is denoised by GDL
as cascades proceed. Bottom two rows show if we input random noise,
VR-Net is still capable of producing a smooth deformation.

We therefore suggest using more cascades if one can afford
them. As for the two parameterizations (�1 and �2), we notice
a slight improvement using �2 and therefore use this para-
meterization for all our comparative experiments. Comparing
different data terms, we find L1 and L2 are on par with
each other, which may be due to their closed-form solutions.
We therefore use both L1 and L2 data terms for comparative
experiments. Next, by comparing the results obtained by using
different denoising networks in Table I, we find residual
U-Net performs better and therefore use it for the comparative
experiments on UK Biobank and ACDC. However, U-Net is
better on the 3D CMR dataset, as shown in Table V.

4) Brightness Constancy Assumption: The brightness con-
stancy assumption in Eq. (2) is often not suited for medical
images with contrast variances and therefore our method will
not work well for those images. However, we would like
to point out that the proposed framework is not limited to
only this assumption and can be extended to other similar-
ity/dissimilarity metrics such as local cross correlation (invari-
ant to multiplicative illumination changes), mutual information
(suitable for multi-modality image registration) and others.
The idea is to use the second-order Taylor theorem [35], [52]
to expand a respective metric and then approximate the
Hessian matrix in the Taylor expansion with a positive semi-
definite matrix. In this case, the resultant problem is a convex
optimization which fits in our proposed framework. On the
other hand, it is also possible to consider other L1 or L2
based data terms, including contrast invariant descriptors based
on image gradients [52], [53] or modality independent image
descriptors such as nonlocal MIND [63]. We will investigate
these in our future research.

VI. CONCLUSION

In this paper, we propose a model-driven VR-Net for
deformable image registration, which combines the iterative
variational method with modern data-driven deep learning
methods. By taking advantage of both approaches, our VR-
Net outperforms deep data-driven methods as well as classical

iterative methods (in terms of Hausdorff distance) on three
cardiac MRI datasets. Extensive experimental results show our
VR-Net is fast, accurate, and data-efficient. For our future
work, we will extend the VR-Net to multi-modality image
registration.

APPENDIX A

In this section, we propose to derive the solution of
u−subproblem (s = 1) in Section III-A using a primal-
dual method, originally proposed in [64] for Total Variation
denoising [65]. Here we use all notations in 3D only. First,
we rewrite the subproblem into its discrete form

min
u


ρ(u)
1 + θ

2

vk − u
2, (9)

where ρ(u) = �∇ I1, u − uω� + I1 − I0. This minimization
problem (9) can be converted equivalently to a saddle-point
problem by writing the first term as a maximization, i.e.


ρ(u)
1 = max
z
∞≤1
�ρ(u), z�,

over the dual variable z ∈ R
M N H where M N H is the the

image size, and 
z
∞ = maxi, j,l
��zi, j,l

�� and �ρ(u), z� =�
i, j,l (ρ(u))i, j,l zi, j,l where i, j, l denote image indices.
The minimization problem (9) is equivalent to the following

primal-dual (min-max) problem, i.e.

min
u

max
z,
z
∞≤1

�ρ(u), z� +θ

2

vk − u
2, (10)

over the primal variable u ∈ R
M N H and the dual variable z,

respectively.
First, we differentiate (10) with respect to u and derive

its first-order optimality condition, resulting in the following
closed-form solution for u

u = vk−z
∇ I1

θ
. (11)

We then plug the solution (11) into (10), converting the
primal-dual problem into the following dual problem only

max
z,
z
∞≤1

�ρ(vk−z
∇ I1

θ
), z� + 1

2θ

z∇ I1
2

2. (12)

If we differentiate (12) with respect to z and derive its first-
order optimality condition, we have the following formulation

ẑ = θρ(vk)

|∇ I1|2 ,

which needs to be projected to the convex set Z =�
z ∈ R

M N H : 
z
∞ ≤ 1
	

to satisfy the constraint 
z
∞ ≤ 1.
This results in

z = ẑi, j,l

max
���ẑi, j,l

�� , 1
� . (13)

Note that, although the KKT condition is not consid-
ered when we handle the inequality constraint 
z
∞ ≤ 1,
the derivation of z above still makes sense as it is equivalent
to a one-step proximal gradient descent with the optimal
step size.
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Finally, we plug (13) into (11) which leads to the solution
for u without involving the dual variable z

u = vk − ẑi, j,l

max
���ẑi, j,l

�� , 1
� ∇ I1

θ
, (14)

which is a point-wise, closed-form solution, the same as (5)
of the u−subproblem in Section III-A. We highlight that
our derivation presented here can be easily applied to vector
images, which usually appear in data terms that use image
patch or gradient information.

APPENDIX B

In this section, we derive the solution of the Sherman
Morrison formula (6) in 2D and 3D. For both cases, we need
to invert the left-hand side matrix in Eq. (6). As per [54],
we have

(JJT + θ1)−1 = θ−11 − JJT

θ2 + θJTJ
.

In 2D, this matrix is a 2 × 2 symmetric matrix for which
each entry is of the 2D image size (M N). In 3D, it becomes
a 3 × 3 symmetric matrix for which each entry is of the 3D
image size (M N H ). The solution uk+1 is therefore given by

uk+1 = uω +


1 − JJT

θ + JTJ

� �
vk − uω − θ−1J(I1 − I0)



,

(15)

which is the form in terms of matrix and vector multiplication.
With Eq. (15), it is now trivial to derive the final point-wise,
closed-form solutions in both 2D and 3D.

First, in 2D where I1 ∈ R
M N , we have

JJT =



I x
1 I x

1 I x
1 I y

1
I y
1 I x

1 I y
1 I y

1

�
∈

�
R

M N
�4

and JTJ = |∇ I1|2 = I x
1 I x

1 + I y
1 I y

1 , where I x
1 ∈ R

M N and I y
1 ∈

R
M N are respectively the horizontal and vertical derivatives

of the source image I1. With u = (u1, u2)
T ∈ �

R
M N

�2
and

v = (v1, v2)
T ∈ �

R
M N

�2
, we can rewrite Eq. (15) into the

following forms in terms of both components of u⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk+1
x = uω

x +
(I y

1 I y
1 +θ)(vk

x −uω
x )− I x

1 I y
1 (vk

y − uω
y )

−I x
1 (I1 − I0)

I x
1 I x

1 + I y
1 I y

1 + θ

uk+1
y = uω

y +
(I x

1 I x
1 +θ)(vk

y −uω
y )− I y

1 I x
1 (vk

x − uω
x )

−I y
1 (I1 − I0)

I x
1 I x

1 + I y
1 I y

1 + θ
.

(16)

Then, in 3D where I1 ∈ R
M N H , we have

JJT =
⎡
⎢⎣

I x
1 I x

1 I x
1 I y

1 I x
1 I z

1

I y
1 I x

1 I y
1 I y

1 I y
1 I z

1

I z
1 I x

1 I z
1 I y

1 I z
1 I z

1

⎤
⎥⎦ ∈

�
R

M N H
�9

and JTJ = |∇ I1|2 = I x
1 I x

1 + I y
1 I y

1 + I z
1 I z

1 , where I x
1 ∈ R

M N H ,
I y
1 ∈ R

M N H and I z
1 ∈ R

M N H are the derivatives of I1 along
x , y and z directions, respectively. With u = (u1, u2, u3)

T ∈�
R

M N H
�3

and v = (v1, v2, v3)
T ∈ �

R
M N H

�3
, we can rewrite

Eq. (15) into the following forms in terms of each component
of u:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk+1
x = uω

x +
(I y

1 I y
1 + I z

1 I z
1 +θ)(vk

x − uω
x ) − I x

1 I y
1 (vk

y − uω
y )

−I x
1 I z

1 (vk
z − uω

z ) − I x
1 (I1 − I0)

I x
1 I x

1 + I y
1 I y

1 + I z
1 I z

1 + θ

uk+1
y = uω

y +
(I x

1 I x
1 + I z

1 I z
1 +θ)(vk

y − uω
y ) − I y

1 I x
1 (vk

x − uω
x )

−I y
1 I z

1 (vk
z − uω

z ) − I y
1 (I1 − I0)

I x
1 I x

1 + I y
1 I y

1 + I z
1 I z

1 + θ

uk+1
z = uω

z +
(I x

1 I x
1 + I y

1 I y
1 +θ)(vk

y −uω
y ) − I z

1 I x
1 (vk

x − uω
x )

−I z
1 I y

1 (vk
z − uω

z ) − I z
1 (I1 − I0)

I x
1 I x

1 + I y
1 I y

1 + I z
1 I z

1 + θ

(17)

We note that both 2D and 3D solutions, i.e., Eqs. (16)
and (17), are closed-form and point-wise and therefore can
be computed very efficiently.
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