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a b s t r a c t 

Optical coherence tomography (OCT) is a noninvasive imaging technique that can produce images of the 

eye at the microscopic level. OCT image segmentation to detect retinal layer boundaries is a fundamental 

procedure for diagnosing and monitoring the progression of retinal and optical nerve diseases. In this 

paper, we introduce a novel and accurate segmentation method based on geodesic distance for both two 

and three dimensional OCT images. The geodesic distance is weighted by an exponential function, which 

takes into account both horizontal and vertical intensity variations in the image. The weighted geodesic 

distance is efficiently calculated from an Eikonal equation via the fast sweeping method. Segmentation 

then proceeds by solving an ordinary differential equation of the geodesic distance. The performance of 

the proposed method is compared with manual segmentation. Extensive experiments demonstrate that 

the proposed method is robust to complex retinal structures with large curvature variations and irreg- 

ularities and it outperforms the parametric active contour algorithm as well as graph based approaches 

for segmenting retinal layers in both healthy and pathological images. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Optical coherence tomography (OCT) is a powerful imaging

modality that uses low coherence interferometry to provide high-

resolution cross-sectional images of biological tissues, from which

structural and molecular information of the tissues can be obtained

[1] . Over the past two decades, OCT has become a well-established

imaging modality and widely used by ophthalmologists for diag-

nosis of retinal and optical nerve diseases. One of the OCT imaging

biomarkers for retinal and optical nerve disease is the thickness

of the retinal layers. Automated OCT image segmentation to detect

retinal layer boundaries is therefore required. 

However, since the intensity patterns in OCT images are the re-

sult of light absorption and scattering in tissues, OCT images usu-

ally contain a significant amount of inhomogeneity and speckle

noise, posing significant challenges to automated segmentation to

identify tissue boundaries and other specific features. With reti-

nal OCT imaging, disrupted retinal structures caused by pathologies

and shadows by retinal blood vessels further complicate the seg-

mentation process, leading to inaccuracy or failure of automated

retinal layer segmentation algorithms. 
∗ Corresponding author. 

E-mail address: Jinming.Duan@nottingham.ac.uk (J. Duan). 
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In recent years many automatic and semi-automatic OCT seg-

entation approaches have been proposed. These approaches can

e largely divided into three groups: A-scan based methods, B-

can based methods and volume based methods, as illustrated in

ig. 1 . A-scan based methods [2–5] detect intensity peak or val-

ey points on the boundaries in each A-scan profile and then con-

ect the detected points to form a continuous boundary using

odel fitting techniques. These methods can be inefficient and in-

ccurate. B-scans methods [6–16] outperform A-scan methods in

eneral. However, they are prone to speckle noise in OCT images

nd likely to fail on pathological images. Common approaches to

egmenting two-dimensional (2D) B-scans include active contour

ethods [6–9,17] , shortest-path based graph search [10–12] and

tatistical shape models [13–15] (i.e., active shape and appearance

odels [18,19] ). Popular volume based methods are graph based

20–26] and pattern recognition methods [27–30] . Computation of

hese methods can however be very complex and slow. Pattern

ecognition methods for retinal layer segmentation normally re-

uire manually segmented training data for classification. Auto-

ated segmentation of retinal layers from OCT images remains a

hallenge. 

In this paper, we present a new algorithm for retinal layer

egmentation from OCT images based on a novel geodesic dis-

ance weighted by an exponential function. In contrast a single

http://dx.doi.org/10.1016/j.patcog.2017.07.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2017.07.004&domain=pdf
mailto:Jinming.Duan@nottingham.ac.uk
http://dx.doi.org/10.1016/j.patcog.2017.07.004
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Fig. 1. A en-face fundus image (left) overlaid with lines representing the locations of B-scans in a volumetric OCT image. The red line corresponds to the B-scan in the 

image (top right). One vertical A-scan of the B-scan is shown in the plot (bottom right). The fovea region is characterised by a depression in the centre of the retinal layer. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. An example cross-sectional B-Scan OCT image centred at the macula, show- 

ing nine target intra-retinal layer boundaries detected by the proposed method. 

The names of these boundaries labelled as notations B 1 , B 2 , ..., B 9 are summarised 

in Table 1 . 
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orizontal gradient used in other approaches [10,25,26] , the ex-

onential function in our method integrates both horizontal and

ertical gradient information and can thus account for intensity

ariations in both directions. The exponential function also plays

he role of enhancing weak retinal layer boundaries. As a result,

he proposed geodesic distance method (GDM) is able to segment

omplex retinal structures with large curvatures and other irregu-

arities caused by pathologies. We compute the weighted geodesic

istance via an Eikonal equation using the fast sweeping method

31–33] . Retinal layer boundaries can then be detected using the

eodesic distance by solving an ordinary differential equation via

 time-dependent gradient descent. A local search region is iden-

ified based on the detected boundary to detect all the nine reti-

al layer boundaries and overcome the local minima problem of

he GDM. The retinal layer boundaries detected by the proposed

DM are shown in Fig. 2 . We evaluate the proposed GDM through

xtensive numerical experiments and compare it with state-of-the-

rt OCT segmentation approaches on both healthy and pathological

mages. 

In the following sections, we will first review the state-of-the-

rt methods for comparison with the proposed GDM, such as par-

llel double snakes [9] , Chiu’s graph search [10] , Dufour’s method

23] , and OCTRIMA3D [25,26] . This will be followed by the details

f the proposed GDM, ground-truth validation, numerical exper-

ments, and comparison of the GDM with the above mentioned

tate-of-the-art methods. 

. Literature review 

In this section, we will limit our review of the state-of-the-

rt methods to only those that we will compare our GDM with

n Section 3 (i.e., parallel double snakes [9] , Chiu’s method [10] ,
CTRIMA3D [25,26] , Dufour’s method [23] ). For a complete review

n related subjects, we refer the reader to [34] . Among the four

ethods reviewed, the first two are for segmenting 2D B-scans,

nd the latter two are for segmenting 3D volumes. 

Parallel double snakes (PDS) : Rossant et al. [9] detected the

athological (retinitis pigmentosa) cellular boundaries in B-scan

mages by minimising an energy functional that includes two par-

llel active parametric contours. Their proposed PDS model con-

ists of a centreline C(s ) = (x (s ) , y (s )) parametrised by s and two

arallel curves C 1 (s ) = C(s ) + b(s ) n (s ) and C 2 (s ) = C(s ) − b(s ) n (s )

ith b ( s ) being a spatially varying half-thickness and n (s ) =
(n x (s ) , n y (s )) the normal vector to the centreline C ( s ). Specifically,

heir PDS model is defined as 

(C, C 1 , C 2 , b) = E Image ( C 1 ) + E Image ( C 2 ) + E Int (C) + R ( C 1 , C 2 , b ) , 

(2.1) 

here the image energy E Image ( C 1 ) = − ∫ 1 
0 | ∇I( C 1 ) | 2 ds ( ∇ is the

mage gradient operator) attracts the parametric curve C 1 towards

ne of retinal borders of the input B-scan I , whilst E Image ( C 2 ) han-

les curve C 2 which is parallel to C 1 . The internal energy E Int (C) =
α
2 

∫ 1 
0 | C s (s ) | 2 ds + 

β
2 

∫ 1 
0 | C ss (s ) | 2 ds imposes both first and second or-

er smooth regularities on the central curve C , with α and β
espectively controlling the tension and rigidity of this curve.

 ( C 1 , C 2 , b ) = 

ϕ 
2 

∫ 1 
0 | b ′ (C) | 2 ds is a parallelism constraint imposed on

 1 and C 2 . Nine retinal borders have been detected by the method,

.e., ILM, RNFL o , IPL-INL, INL-OPL, OPL-ONL, ONL-IS, IS-OS, OS-RPE

nd RPE-CH. 

Chiu’s method : Chiu et al. [10] considered retinal layer boundary

etection in a B-scan image as determining the shortest-path that

onnects two points in a graph G = (V, E) , where V is the set of

odes in the graph corresponding to pixels in the B-scan image,

nd E is the set of weights assigned to pairs of nodes in the graph.

ach node is connected only to its eight nearest neighbours, result-

ng in a sparse adjacency matrix of weights representing intensity

ariations in vertical direction. For example, an M × N sized image

as an MN × MN sized adjacency matrix with 8 MN non-zero en-

ries. The weights are calculated from the intensity gradient of the

mage in vertical direction. Mathematically, the weights are calcu-

ated as 

 ( a, b ) = 

{
2 − ( g a + g b ) + w min if | a − b | ≤ √ 

2 

0 otherwise 
, (2.2) 

here g is the vertical gradient of the B-scan image; a and b de-

ote two separate nodes in V respectively and w is a small
min 
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Table 1 

Notations for nine retinal layer boundaries, their corresponding names and abbreviations. 

Notation Name of retinal layer boundary Abbreviation 

B 1 Internal limiting membrane ILM 

B 2 Outer boundary of the retinal nerve fibre layer RNFL o 
B 3 Inner plexiform layer-inner nuclear layer IPL-INL 

B 4 Inner nuclear layer-outer plexiform layer INL-OPL 

B 5 Outer plexiform layer-outer nuclear layer OPL-ONL 

B 6 Outer nuclear layer-inner segments of photoreceptors ONL-IS 

B 7 Inner segments of photoreceptors-outer segments of photoreceptors IS-OS 

B 8 Outer segments of photoreceptors-retinal pigment epithelium OS-RPE 

B 9 Retinal pigment epithelium-choroid RPE-CH 

Table 2 

Target boundaries of the five methods compared in this paper (check mark means the layer boundary can be detected, while cross mark means the boundary 

cannot be detected). 

Method ILM ( B 1 ) RNFL o ( B 2 ) IPL-INL ( B 3 ) INL-OPL ( B 4 ) OPL-ONL ( B 5 ) ONL-IS ( B 6 ) IS-OS ( B 7 ) OS-RPE ( B 8 ) RPE-CH ( B 9 ) 

PDS [9] � � � � � � � � � 

Chiu’s method [10] � � � � � × � × � 

Dufour’s method [23] � � � × � × � × � 

OCTRIMA3D [25,26] � � � � � × � � � 

Proposed GDM � � � � � � � � � 
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positive value to stabilise the system. The most prominent layer

boundary is then detected as the minimal weighed path from the

first to the last vertex in V using the Dijkstra’s algorithm. A sim-

ilar region refinement technique to Section 3.4 was used to detect

seven retinal boundaries, i.e., ILM, RNFL o , IPL-INL, INL-OPL, OPL-

ONL, IS-OS and RPE-CH. 

Dufour’s method : Dufour et al. [23] proposed a modification of

optimal graph search approach [35] to segment retinal layers in 3D

OCT images. By using soft constraints and prior knowledge, they

improve the accuracy and robustness of the original framework.

Specifically, their Markov random field based model is given by 

E ( S ) = 

n ∑ 

i =1 

(
E boundary ( S i ) + E smooth ( S i ) 

)
+ 

n −1 ∑ 

i =1 

n ∑ 

j= i +1 

E int er 

(
S i , S j 

)
, 

where S is a set of layer boundaries S 1 to S n . The external sur-

face energy E boundary ( S i ) is computed from 3D OCT images. The

surface smoothness energy E smooth ( S i ) guarantees the connectivity

and regularises the layers. The interaction energy E int er 

(
S i , S j 

)
in-

tegrates soft constraints to regularise the distances between two

simultaneously segmented layer boundaries. This model is then

built from training datasets consisting of fovea-centered OCT slice

stacks. Their method is capable to segment six retinal layers ( n = 6

in above formulation) in both healthy and macular edema subjects,

i.e., ILM, RNFL o , IPL-INL, OPL-ONL, IS-OS and RPE-CH. 

OCTRIMA3D : Tian et al. [25,26] proposed a real-time automatic

segmentation method for 3D OCT images. The segmentation was

done frame-by-frame in each 2D B-Scan by considering the spa-

tial dependency between each two adjacent frames. Their work is

based on Chiu’s graph search framework [10] for B-Scan OCT im-

ages, with added inter-frame flattening to reduce the curvature

in the fovea region and thus improving the accuracy. They also

use inter-frame or intra-frame information to limit the search re-

gion in current or adjacent frame so as to increase the compu-

tational speed. The method can segment eight retinal layers, i.e.,

ILM, RNFL o , IPL-INL, INL-OPL, OPL-ONL, IS-OS, OS-RPE and RPE-CH.

Table 2 reports the retinal boundaries detected by the four meth-

ods as well as our GDM method detailed in the next section. 

3. Proposed geodesic distance method 

In this section, we present our GDM method for segmentation

of OCT images to detect nine retinal layers defined in Fig. 2 and
able 1 . We will describe the method for 2D segmentation in

etail. For 3D segmentation, we first calculate the 3D geodesic

istance volume in a manner similar to that of 2D segmenta-

ion, followed by minimal path detection on each slice of the

eodesic distance volume. In Appendix, we present the implemen-

ation details of geodesic distance calculation for both 2D and 3D

egmentation. 

.1. Geodesic distance 

We use geodesic distance to identify the pixels on the bound-

ries of retinal layers in OCT images. The geodesic distance d is the

mallest integral of a weight function W over all possible paths

rom two points s 1 and s 2 . The weight function determines how

he path goes from s 1 to s 2 . Small weight at one point indicates

hat the path has high possibility of passing that point. Specifically,

he weighted geodesic distance between two endpoints s 1 and s 2 
s given by 

 ( s 1 , s 2 ) = min 

C 

∫ 1 

0 

W 

−1 ( C ( s ) ) ds . (3.1)

bove C ( s ) is the set of all possible paths that link s 1 to s 2 , the

ath length is normalised to unity, and the start and end loca-

ions are C(0) = s 1 and C(1) = s 2 , respectively. The infinitesimal

ontour length ds is weighted by a non-negative function W ( C ( s )).

his minimisation problem can be interpreted as finding a geodesic

urve (i.e., a path with the smallest weighted length) in a Rie-

annian space. It is known that the solution of (3.1) satisfies the

ikonal Eq. (3.3) . 

The retinal layer boundaries in OCT images are normally near

orizontal so the largest intensity changes at the layer boundaries

re likely to be in the vertical direction. The gradient in the verti-

al direction is thus taken to compute weight W in (3.1) in order

o determine the path that passes the points with maximum gra-

ient changes. For instance, each of the two prominent boundaries,

.g., ILM ( B 1 ) and IS-OS ( B 7 ) in Fig. 3 (a) and (e), is at the border of

 dark layer above a bright layer. As a result, pixels in the region

round the two boundaries have high gradient values, as shown in

ig. 3 (b) and (f). As the retinal layers at each side of the bound-

ry are either transiting from dark to bright or bright to dark, the

on-negative weight function W in this paper is defined based on
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Fig. 3. Effectiveness of the weight W defined in (3.2) on real OCT images. (a) and (e): normal B-scan OCT data and pathological B-scan from an eye with age-related 

macular degeneration (drye-AMD); (b) and (f): vertical dark-to-bright gradient maps of (a) and (e), respectively; (c) and (g): dark-to-bright gradient maps calculated using 

Eq. (3.2) with λ = 1 . Note that the pixel gradients have been enhanced in the blue rectangular region where large curvature and bumps occur; (d) and (h): layer boundary 

detection results using the method described in Section 3.3 with different gradient maps: the yellow lines are computed using (b) and (f), and the red lines using (c) and 

(g). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Effectiveness of the weight W defined in (3.2) on two synthetic images. (a) and (e): synthetic images with changes in both vertical and horizontal directions; (b) and 

(f): pure vertical dark-to-bright gradient maps of (a) and (e), respectively; (c) and (g): dark-to-bright gradient maps calculated using Eq. (3.2) with λ = 1 – both vertical and 

horizontal gradients are enhanced using the proposed method, leading to robust gradient maps for segmentation; (d) and (h): boundary detection results via the method 

described in Section 3.3 using different gradient weights. Yellow lines are computed using (b) and (f), whilst red lines using (c) and (g). (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 
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ntensity variation as follows 

 ( x ) = 

{
1 − exp ( −λ( 1 − n ( ∇ x I ) ) n ( | ∇ y I | ) ) dark-to-bright 
exp ( −λ( 1 − n ( ∇ x I ) ) n ( | ∇ y I | ) ) bright-to-dark 

, 

(3.2) 

here I is an input OCT image; n ( · ) is a linear stretch opera-

or used to normalise values to between 0 and 1; exp is the ex-

onential function, and λ is a user-define parameter, which to-

ether enhance the foveal depression regions and highlight the

eak boundaries [36] ; ∇ x and ∇ y are the first-order gradient op-

rator along x (vertical) and y (horizontal) direction respectively,

hich are discretised using a central finite difference scheme un-

er the Neumann boundary condition; and n (| ∇ y I |) is positive

orizontal gradient, without which only vertical direction is ac-

ounted for and is thus only applicable to flat boundaries, as ev-

dent in Fig. 4 . Consequently, the GDM with the weight W defined

n (3.2) is robust against curved features (e.g., the central region of

he fovea) as well as other irregularities (e.g., bumps or large vari-
tions of boundary locations) caused by pathologies, as illustrated

n Fig. 3 as well as in the experimental section. 

.2. Selection of endpoints s 1 and s 2 

For fully automated segmentation, it is essential to find a way

o initialise the two endpoints s 1 and s 2 automatically. Since the

etinal boundaries in the OCT images used in this paper run across

he entire width of the image, we add an additional column on

ach side to the gradient map computed from (3.2) . As the mini-

al weighted path is sought after, a weight W max larger than any

f the non-negative weights calculated from (3.2) is therefore as-

igned to each of the newly added vertical columns (note that we

se W 

−1 for the geodesic distance (3.1) , the minimal weighted

ath thereby prefers large weights). This forces the path traver-

al in the same direction as the newly added vertical columns

ith maximal weights, and also allows the start and end points to

e arbitrarily assigned in the two columns. Once the retinal layer

oundary is detected, the two additional columns can be removed.
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Fig. 5. Two set of segmentation examples using different automatic endpoints initialisations on a dark-to-bright gradient map. s 1 and s 2 are start and end points, respectively. 

Rows 1 and 2 respectively show the path evolution results using Eq. (3.5) . The paths start at s 1 and end at s 2 . 

Fig. 6. Distance maps calculated using the fast sweeping method on the gradient weights in Fig. 5 . The left distance map is computed using the end point s 2 in the 1st row 

of Fig. 5 , while the right distance map using the end point s 2 in the 2nd row of Fig. 5 . The range of distance values is represented by the color bar at the bottom. 
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Rows 1 and 2 in Fig. 5 respectively show different initialisations of

two endpoints as well as the corresponding path evolution results.

3.3. Eikonal equation and minimal weighted path 

The solution of (3.1) can be obtained by solving the Eikonal

equation after the endpoints are determined. Specifically, over a

continuous domain, the distance map D ( x ) to the seed point s 2 is

the unique solution of the following Eikonal equation in the vis-

cosity sense 

| ∇D ( x ) | = W 

−1 ( x ) , x ∈ �\{ s 2 } (3.3)

and 

D ( x ) = 0 , x ∈ { s 2 } . 
The equation is a first order nonlinear partial differential equa-

tion and its solution can be found via the classical fast march-

ing algorithm [37,38] using an upwind finite difference approxi-

mation with the computational complexity O ( MNlog ( MN )) ( MN is

the total number of grid points). Recently, the fast sweeping algo-

rithm [31,32] has been proposed. This technique is based on a pre-

defined sweep strategy, replacing the heap priority queue to find

the next point to process, and thereby has the linear complexity of

O ( MN ). Fast sweeping is faster than fast marching for simple geom-

etry problems. However, the situation may be reversed for complex

geometry. In this paper, we apply fast sweeping for (3.3) and its

detailed implementation has been given in Appendix. Fig. 6 shows

two distance maps calculated using the weight and end points de-

fined in Fig. 5 . 

Once the geodesic distance map to the end point s 2 is found,

the minimal weighted path (geodesic curve γ ) between point s 
1 
nd s 2 can be extracted from the following ordinary differential

lgorithm 1 Proposed GDM for one retinal boundary detection. 

: Input OCT B-scan data I 

: Calculate dark-to-bright or bright-to-dark weight W using (3.2) 

: Pad two new columns to the weight and assign large values to

hem 

: Select two endpoints s 1 and s 2 on the two newly padded

olumns 

: Calculate distance map D in (3.3) using fast sweeping algorithm

: Find one retinal layer boundary γ using the gradient descent

ow (3.5) 

: Remove the additional columns in the edge detection result 

quation through the time-dependent gradient descent 

′ ( t ) = −ηt ∇D ( γ ( t ) ) , γ ( 0 ) = s 1 , (3.4)

here ηt > 0 controls the parametrisation speed of the result-

ng curve. To obtain unit speed parametrisation, we use ηt =
 

∇D ( γ ( t ) ) | −1 
ε . Since the distance map D is nonsmooth at point s 2 ,

 small positive constant ε is added to avoid dividing by zero. Note

hat γ is guaranteed to end at the point s 2 by solving the ordi-

ary differential equation, because the distance field is monotoni-

ally decreasing from s 1 to s 2 , as observed in Fig. 6 . This technique

an achieve sub-pixel accuracy for the geodesic path even if the

rid is discrete. 

The geodesic curve is then numerically computed using a

iscretised gradient descent, which defines a discrete curve
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Fig. 7. Detecting the IS-OS boundaries in the normal and pathological images after image enhancement via a local adaptive thresholding method (3.6) . 

Fig. 8. Segmentation results of the nine retinal layer boundaries on both normal and dye-AMD pathological B-scans, as shown in (a) and (c). The detection of the RNFL o 
boundary however shows errors due to the absence of a search region for this boundary in, as evident in (a). (b) shows that these errors have been corrected. 
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k using 

k +1 = γ k − τG 

(
γ k 

)
, (3.5) 

here γ k is a discrete approximation of γ ( t ) at time t = kτ, and

he time step size τ > 0 should be small enough. G ( x ) is the nor-

alised gradient ∇ D ( γ ( t ))/| ∇ D ( γ ( t ))| ε parametrised by the arc

ength. Once γ k +1 reaches s 2 , one of the retinal boundaries can be

ound. The following Algorithm 1 concludes the proposed GDM for

xtracting one retinal boarder from an OCT B-scan. 

.4. Detection of nine retinal layer boundaries 

In this section, we show the implementation details of the pro-

osed approach to segment nine retinal layer boundaries, as shown

n Fig. 2 and Table 1 . Since the proposed model (3.1) is not con-

ex due to the image gradient used, its solution can easily get

tuck in local optima. For example, Fig. 3 (c) and (g) have high gra-

ient values in the region around both the ILM and IS-OS bound-

ries. However, in Fig. 3 (d) the algorithm detected the ILM bound-

ry while in Fig. 3 (h) it detected IS-OS. In order to eliminate such

ncertainty, we dynamically define the search region based on the

etected boundaries. The following describes the detection of the

ine boundaries in a hierarchical fashion. 

.4.1. Detection of the IS-OS boundary 

The intensity variation between two layers divided by the IS-OS

 B 7 ) border are normally the most prominent in OCT B-scans. How-

ver, since OCT images are always corrupted by speckle noise as a

esult of light absorption and scattering in the retinal tissue, it is

ot always the case. For example, the intensity variation around

he IML ( B 1 ) border sometimes can be more obvious than that

round IS-OS, as shown in the gradient image Fig. 3 (c). To make

ure the first segmentation being the IS-OS boundary we first en-

ance it via a simple local adaptive thresholding approach, 1 which

s given as follows 

p = 

{
0 ls ( I, ws ) − I > C 
1 otherwise 

, (3.6) 

here I is the input OCT image, and ls ( p, ws ) means that I is con-

olved with a suitable operator, i.e., the mean, Gaussian or me-

ian filter. We mention that the purpose of using a filter in (3.6) is
1 http://homepages.inf.ed.ac.uk/rbf/HIPR2/adpthrsh.htm 

w  

I  

t

o overcome the inhomogeneity effect by oversmoothing the input

mage such that the resulting image can be simply segmented by

he thresholding method. Our previous research [39,40] has shown

hat such a method is very robust against intensity inhomogene-

ty appeared in different medical images. ws is the window size of

he filter and C a user-defined threshold value. In the paper, we use

he mean filter with window size ws = 100 and set C = 0 . 01 . The

nhanced image can then be obtained by multiplying the original

mage I with p . The first two images in Fig. 7 illustrate that the

ontrast of the IS-OS boarder has been enhanced and the most ob-

ious intensity variation now takes place around the IS-OS layer

oundary. The IS-OS boundary is then detected on a dark-to-bright

radient image. Consequently, the detected line is guaranteed to

ass IS-OS, as shown in the last two images in Fig. 7 . 

.4.2. Detection of the RPE-CH, OS-RPE and ONL-IS boundaries 

Once IS-OS ( B 7 ) is segmented, it can be used as a reference to

imit the search region for segmenting the RPE-CH ( B 9 ), OS-RPE

 B 8 ) and ONL-IS ( B 6 ) boundaries. RPE-CH and OS-RPE are below

S-OS and they are detected in the following way: RPE-CH can

e extracted by applying the GDM on the bright-to-dark gradi-

nt weight obtained from the region pixels below IS-OS (i.e., the

right-to-dark weight is set to zeros above IS-OS); OS-RPE is then

etected on the bright-to-dark gradient weight in the region be-

ween the IS-OS and RPE-CH boundaries (i.e., the bright-to-dark

radient weight is set to zeros outside of the region between IS-

S and RPE-CH). ONL-IS is above IS-OS. The search region can be

onstructed between IS-OS and a parallel line above it with a di-

meter of 15 pixels. The dark-to-bright gradient weight outside of

he region is then set to zeros. Hence, the only layer boundary in

he search region is ONL-IS which can be extracted using the GDM

n the dark-to-bright gradient weight. 

.4.3. Detection of the ILM and INL-OPL boundaries 

Both ILM ( B 1 ) and INL-OPL ( B 4 ) are at the border of a darker

ayer above a bright layer. The intensity variation around the IML

oundary is much more prominent and thus it is segmented first.

he detected ONL-IS boundary is taken as a reference and the

ark-to-bright gradient weight below ONL-IS is set to zeros. INL-

PL can be then easily detected on the dark-to-bright gradient

eight by simply limiting the search region between ILM and ONL-

S (i.e., the dark-to-bright gradient weight is set to zeros outside of

he region between ILM and ONL-IS). 

http://homepages.inf.ed.ac.uk/rbf/HIPR2/adpthrsh.htm
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Fig. 9. The overview of the proposed framework for dynamically detecting nine retinal layer boundaries defined in Fig. 2 and Table 1 . Section 3.4 describes this flow chart in 

detail. 
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3.4.4. Detection of the OPL-ONL, IPL-INL and RNFL o boundaries 

OPL-ONL ( B 5 ), IPL-INL ( B 3 ) and RNFL o ( B 2 ) demonstrate a bright

layer above a darker layer and thus can be detected on the

bight-to-dark gradient weight. The segmented INL-OPL and ONL-

IS boundaries are taken as two reference boundaries, and OPL-ONL

can be found by limiting the search region between INL-OPL and

ONL-IS. The search region for IPL-INL can be then constructed be-

tween the INL-OPL boundary and a parallel line above it with a di-

ameter of 20 pixels. IPL-INL can be located on a bright-to-dark gra-

dient weight which is set to zeros outside of the search region con-

structed. Finally, RNFL o can be found in the search region between

the two reference boundaries IPL-INL and IML. However, because

the IPL-INL and IML boundaries are very close to each other in

the central region of the fovea, the search region for the RNFL o are

sometimes missing around the fovea region. This leads to segmen-

tation errors of RNFL o , as shown in Fig. 8 (a). These errors however

can be avoided by simply removing the spurious points detected

on RNFL o in the region above IML, as shown in Fig. 8 (b). For clarity,

the proposed method for segmenting nine retinal layer boundaries

is summarised in the flow chart shown in Fig. 9 . 

4. Experiment setup 

To evaluate the performance of the proposed GDM qualita-

tively and quantitatively, numerical experiments are conducted

to compare it with the state-of-the-art approaches reviewed in

Section 2 on both healthy and pathological OCT retinal images. As

the GDM is able to segment both 2D and 3D OCT images, we per-

form numerical experiments on both B-scans and volumetric OCT
mages. A pre-processing method [41] is used to reduce noise prior

o determining the layers boundaries for all segmentation methods.

n the following, we introduce the detailed procedure of OCT data

cquisition, evaluation metrics used to quantify segmentation re-

ults, final numerical results, and computational complexity of dif-

erent methods. 

.1. Clinical data 

30 Spectralis SDOCT (ENVISU C class 2300, Bioptigen, axial res-

lution = 3.3 m, scan depth = 3.4 mm, 32, 0 0 0 A-scans per sec-

nd) B-scans from 15 healthy adults (mean age = 39.8 years, SD

 8.6 years; 7 male, 8 female) were used for the research. All

he data was collected after informed consent was obtained and

he study adhered to the tenets of the Declaration of Helsinki and

thics Committee approval was granted. 

2D B-scan data : The B-scan was imaged from the left and right

ye of 15 healthy adults using a spectral domain OCT device with a

hin rest to stabilise the head. The B-scan located at the foveal cen-

re was identified from the lowest point in the foveal pit where the

one outer segments were elongated (indicating cone specialisa-

ion). To reduce the speckle noise and enhance the image contrast,

very B-scan was the average of aligned images scanned at the

ame position. In addition to the 30 OCT images from the healthy

ubjects, another 20 B-scans from subjects with pathologies are

lso used to compare the proposed GDM with other approaches

n pathological cases. These B-scans are from an eye with dry age-

elated macular degeneration (drye-AMD), which is available from
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Fig. 10. Comparison of different OCT segmentation methods using healthy and pathological B-scans. 1st row: healthy (i.e., first two) and pathological (i.e., last two) B-scans; 

2nd row: results by the PDS model (2.1) ; 3rd row: results by Chiu’s method; 4th row: results by the proposed GDM; 5th row: ground truth. 
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he Dufour’s software package’s website. 2 Segmentation accuracy

y the three automated 2D methods (i.e., PDS, Chiu’s method and

DM) over these healthy and pathological B-scans is evaluated us-

ng the ground truth datasets, which were manually detected with

xtreme carefulness by one observer. 

3D OCT data : 10 Spectralis SD-OCT (Heidelberg Engineering

mbH, Heidelberg, Germany) volume data sets from 10 healthy

dult subjects are used in this study. Each volume contains 10 B-

cans, and the OCT A-scans outside the 6mm × 6mm (lateral ×
zimuth) area and centred at the fovea were cropped to remove

ow signal regions. All volumetric data can be downloaded from

25] , where also contains the results of the OCTRMA3D , and the

anual labellings from two graders. In this study we choose the

anual labelling of grader 1 as the 3D ground truth. 

.2. Evaluation metrics 

Performance metrics are defined to demonstrate the effective-

ess of the proposed GDM and compare it with the existing meth-
2 http://pascaldufour.net/Research/software _ data.html 

g  

o  

w

ds. Three commonly used measures of success for retinal layer

oundary detection are signed error (SE), absolute error (AE) and

ausdorff distance (HD). Among them, SE indicates the bias and

ariability of the results. AE is the absolute difference between au-

omatic segmentation and ground truth, while HD measures the

istance between the farthest point of a set to the nearest point

f the other and vice versa. Specifically, these metrics are denoted

s 

SE 

(
B i , ̃  B i 

)
= 

1 

n 

n ∑ 

j=1 

(
B i j − ˜ B i j 

)
, 

AE 

(
B i , ˜ B i 

)
= 

1 

n 

n ∑ 

j=1 

(∣∣B i j − ˜ B i j 

∣∣), 
D 

(
B i , ˜ B i 

)
= max 

(
max 
x ∈ B i 

{
min 

y ∈ ̃ B i 

‖ 

x − y ‖ 

}
, max 

x ∈ ̃ B i 

{
min 

y ∈ B i 
‖ 

x − y ‖ 

})
. 

bove B i and 

˜ B i are respectively the detected boundaries and

round truth boundaries (i.e., manual labellings). n is the number

f pixels/volexs that fall on the retinal layer boundary. Statistically,

hen the SE value is close to zero, the difference between B and 

˜ B 
i i 

http://pascaldufour.net/Research/software_data.html
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Table 3 

Mean and standard deviation of SE ( μm ), AE ( μm ) and HD ( μm ) calculated using the results of different methods (PDS, Chiu’ method and GDM) and the ground truth 

manual segmentation, over 30 healthy OCT B-scans. Besides, • ( ◦) indicates that GDM is better (worse) than the compared methods (paired t -tests at 95% significance 

level). 

SE ( μm ) AE ( μm ) HD ( μm ) 

Boundary PDS Chiu et al. GDM PDS Chiu et al. GDM PDS Chiu et al. GDM 

ILM ( B 1 ) −3.92 ± 1.90 • −1.22 ± 0.68 • 0.273 ± 0.33 4.615 ± 2.03 • 2.605 ± 1.12 • 0.924 ± 0.26 36.56 ± 15.9 • 22.12 ± 9.23 • 3.702 ± 1.62 

RNFL o ( B 2 ) −2.57 ± 1.38 • −1.67 ± 1.34 • −0.53 ± 0.37 3.864 ± 1.49 • 2.676 ± 0.82 • 1.262 ± 0.34 29.00 ± 11.6 • 21.25 ± 5.98 • 7.340 ± 2.16 

IPL-INL ( B 3 ) −0.55 ± 0.83 ◦ −1.04 ± 1.21 • −0.38 ± 0.61 1.876 ± 0.60 • 2.020 ± 0.79 • 1.314 ± 0.32 8.619 ± 3.77 • 10.53 ± 5.25 • 7.258 ± 1.92 

INL-OPL ( B 4 ) 0.012 ± 0.58 • −0.90 ± 0.61 ◦ −0.71 ± 0.71 1.708 ± 0.39 ◦ 1.699 ± 0.40 ◦ 1.807 ± 0.51 6.772 ± 2.53 ◦ 7.036 ± 2.84 ◦ 7.505 ± 2.96 

OPL-ONL ( B 5 ) −0.23 ± 1.29 • −1.51 ± 1.30 • −1.12 ± 1.17 2.127 ± 1.00 • 2.133 ± 1.05 • 1.949 ± 0.94 10.22 ± 3.70 • 9.044 ± 3.48 • 7.463 ± 3.24 

ONL-IS ( B 6 ) 6.010 ± 0.83 • – −0.73 ± 0.49 6.055 ± 0.86 • – 1.376 ± 0.36 9.969 ± 1.58 • – 4.630 ± 1.05 

IS-OS ( B 7 ) −0.09 ± 0.61 • 0.194 ± 0.49 ◦ 0.291 ± 0.63 0.823 ± 0.29 • 0.720 ± 0.25 ◦ 0.771 ± 0.36 3.676 ± 1.63 • 3.240 ± 1.60 • 2.611 ± 0.74 

OS-RPE ( B 8 ) 5.202 ± 2.25 • – −0.78 ± 0.47 5.570 ± 1.76 • – 1.125 ± 0.36 8.913 ± 2.28 • – 3.601 ± 0.96 

RPE-CH ( B 9 ) −0.31 ± 0.79 • −0.84 ± 0.58 • −0.74 ± 0.69 1.291 ± 0.25 • 1.228 ± 0.47 • 1.213 ± 0.45 4.237 ± 1.47 • 4.027 ± 1.31 • 3.831 ± 1.08 

Overall 0.394 ± 0.39 • −1.00 ± 0.54 • −0.49 ± 0.23 3.103 ± 0.74 • 1.869 ± 0.59 • 1.305 ± 0.32 13.11 ± 4.25 • 11.04 ± 3.75 • 5.327 ± 1.11 

Table 4 

Mean and standard deviation of SE ( μm ), AE ( μm ) and HD ( μm ) calculated using the results of different methods (PDS, Chiu’s method and GDM) and the ground truth 

manual segmentation, over 20 pathological OCT B-scans. Besides, • ( ◦) indicates that GDM is better (worse) than the compared methods (paired t-tests at 95% significance 

level). 

SE ( μm ) AE ( μm ) HD ( μm ) 

Boundary PDS Chiu et al. GDM PDS Chiu et al. GDM PDS Chiu et al. GDM 

ILM ( B 1 ) −0.41 ± 0.59 • −0.34 ± 0.25 ◦ −0.36 ± 0.29 0.932 ± 0.44 • 0.796 ± 0.17 • 0.683 ± 0.09 6.461 ± 4.86 • 4.087 ± 1.01 • 3.337 ± 1.10 

RNFL o ( B 2 ) −0.93 ± 0.93 • −0.38 ± 0.33 • −0.49 ± 0.50 1.792 ± 0.63 • 1.717 ± 0.53 • 1.257 ± 0.32 6.145 ± 1.84 • 8.464 ± 4.55 • 6.109 ± 2.49 

IPL-INL ( B 3 ) −0.23 ± 0.62 ◦ −0.22 ± 0.27 ◦ −0.32 ± 0.32 1.228 ± 0.21 • 1.149 ± 0.20 • 0.926 ± 0.16 7.640 ± 1.31 • 5.857 ± 0.98 • 5.151 ± 1.82 

INL-OPL ( B 4 ) 0.578 ± 0.64 • 0.555 ± 0.39 • 0.392 ± 0.26 1.546 ± 0.28 • 1.563 ± 0.30 • 1.419 ± 0.16 7.165 ± 1.07 • 8.194 ± 1.36 • 5.942 ± 1.32 

OPL-ONL ( B 5 ) −0.04 ± 1.08 ◦ 0.286 ± 0.55 • −0.07 ± 0.64 2.371 ± 0.76 • 2.255 ± 0.60 • 2.019 ± 0.65 11.28 ± 1.95 • 9.858 ± 2.76 • 9.281 ± 2.25 

ONL-IS ( B 6 ) 3.339 ± 1.22 • – −0.57 ± 0.72 4.484 ± 0.50 • – 1.442 ± 0.34 15.23 ± 4.03 • – 6.205 ± 1.01 

IS-OS ( B 7 ) −0.23 ± 0.86 • 1.030 ± 1.06 • 0.350 ± 0.50 2.415 ± 1.25 • 2.399 ± 1.05 • 1.055 ± 0.22 15.95 ± 10.2 • 17.66 ± 11.3 • 6.795 ± 4.65 

OS-RPE ( B 8 ) 2.371 ± 4.17 • – 0.028 ± 0.41 5.927 ± 2.34 • – 1.821 ± 0.47 22.63 ± 12.9 • – 9.673 ± 1.30 

RPE-CH ( B 9 ) 3.315 ± 2.59 • 3.011 ± 2.98 • 0.027 ± 0.35 4.797 ± 2.59 • 5.146 ± 2.70 • 2.252 ± 0.46 31.23 ± 12.9 • 32.63 ± 13.2 • 13.19 ± 3.50 

Overall 0.863 ± 0.59 • 0.563 ± 0.44 • −0.11 ± 0.22 2.832 ± 0.83 • 2.146 ± 0.70 • 1.430 ± 0.20 13.75 ± 4.72 • 12.39 ± 4.06 • 7.300 ± 0.67 
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a  
is small. In this case, the result is less biased. The measurements of

AE and HD (varies from 0 to ∞ theoretically) signify the difference

between two boundaries, e.g., 0 indicates that both retinal struc-

tures share exactly the same boundary, and larger AE and HD val-

ues mean larger distances between the measured boundaries. We

also monitor the overall SE (OSE), AE (OAE) and HD (OHD) during

all the experiments. They are defined as 

OSE = 

1 

s 

s ∑ 

i =1 

SE 

(
B i , ˜ B i 

)
, 

OAE = 

1 

s 

s ∑ 

i =1 

AE 

(
B i , ˜ B i 

)
, 

OHD = 

1 

s 

s ∑ 

i =1 

HD 

(
B i , ˜ B i 

)
. 

Here s is the total number of retina boundaries one method can

detect. 

4.3. Parameter selection 

There are five parameters in the PDS model: three smooth

parameters α, β , ϕ and two time step sizes γ C and γ b used

within the gradient descent equations to minimise the functional

(2.1) with respect to C and b . In this paper we use α = 10 , β = 0 ,

ϕ = 700 , γC = 10 and γ b ≥ 2 suggested in [9] . In addition, as PDS

is a nonconvex model and its segmentation results depend on ini-

tialisation. We initialise the parallel curves very closely to the true

retinal boundaries for fair comparison with other methods. A max-

imal number of iterations number 500 is used to ensure conver-

gence of the PDS model. The graph theoretic based methods, i.e.,

Chiu’s method, OCTRIMA3D and Dufour’s method, require no pa-

rameter input. Finally, our GDM has two build-in parameters: λ in
3.2) and τ in (3.5) . We set λ = 10 and τ = 0 . 8 to detect the retinal

ayers in the OCT images. 

.4. Numerical results 

We first visually compare the segmentation results of the GDM,

DS and Chiu’s graph search method on both healthy and patho-

ogical B-scans, which are shown in Fig. 10 (a)–(d). The PDS results

hown in (e)-(h) have some errors on some of detected bound-

ries. For instance, the detected B 1 and B 2 boundaries cannot con-

erge to the true retinal boundaries around the central fovea re-

ion, as shown in (f) and (h). This is because PDS is the classi-

al nonconvex snake-driven model which has difficulty handling

oncave boundaries. Moreover, because the B 7 retinal layer has a

uch stronger image gradient than the B 6 and B 8 layers, some

arts of the segmented B 6 and B 8 boundaries have been mistak-

nly attracted to the B 7 layer. Since Chiu’s graph search method

erely considers intensity changes in the vertical direction (2.2) ,

t also fails to segment the fovea region layers with strong curva-

ure, as shown in (j) and (l). Moreover, the algorithm cannot handle

he irregular bumps caused by pathologies very well, as observed

rom the bottom B 9 boundaries detected in (k) and (l). In general,

hiu’s method works very nicely when retinal structures are flat

r smooth without large changes at boundary locations. As com-

ared to the ground truth in the last row, the results by the pro-

osed GDM method are the best, as shown in (m)–(p). As analysed

n Section 3 , the gradient weights defined in (3.2) account for both

ertical and horizontal variations, making it very suitable for both

at and nonflat retinal structures. Hence, GDM is a better clinical

ool for detecting retinal layer boundaries from normal and patho-

ogical images. 

The accuracy of the segmentation results by different methods

gainst ground truth on 30 healthy and 20 pathological B-scans
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Fig. 11. Plots of mean and standard derivation obtained by different methods in Table 3 for healthy B-scans. The 1st and 2nd rows respectively show the mean and standard 

derivation of SE ( μm ), AE ( μm ) and HD ( μm ) for segmenting boundaries B 1 − B 9 using PDS, Chiu’s method and GDM. The overall value is the average result over all 

boundaries. 

Fig. 12. Plots of mean and standard derivation obtained by different methods in Table 4 for pathological B-scans. The 1st and 2nd rows respectively denote the mean and 

standard derivation of the SE ( μm ), AE ( μm ) and HD ( μm ) for segmenting boundaries B 1 − B 9 using PDS, Chiu’s mehtod and GDM. The overall value is the average result 

over all boundaries. 
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Fig. 13. 3D rendered images of human in vivo intra-retinal layers obtained through segmenting 3D SD-OCT images with the proposed GDM method. Samples are named 

Volume 1, Volume 2, Volume 7 and Volume 9. The colour used for each individual retinal layer is the same as in Fig. 2 . 

x
z

x
z

x
y

Fig. 14. Two B-scans extracted from Volume 4. The left shows the en-face representation of the OCT scan with the overlaid green and red lines representing the correspond- 

ing two B-scans in the right. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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is indicated in Tables 3 and 4 , respectively. In order to make the

comparison clearer, we plot the data in the tables in Figs. 11 and

12 , respectively. 

In Table 3 and Fig. 11 , the SE values show that PDS leads to large

segmentation bias with the largest error being 7.45 μm , whilst

GDM results in small bias with the largest error being 0.92 μm .

The mean SE plot of GDM is close to zero, meaning that GDM

is less biased than PDS and Chiu’s method. Large errors from

PDS normally take place at B 1 , B 2 , B 6 and B 8 , which is consis-

tent with visual inspection on the segmentation results of healthy

B-scans in Fig. 10 . Furthermore, the AE values show that GDM

performs better for most of the segmented boundaries. Particu-

larly at B 1 and B 2 where the curved fovea region is located, the

HD values from GDM { 3 . 702 ± 1 . 62 μm , 7 . 340 ± 2 . 16 μm } are sig-

nificantly lower than those from PDS { 36 . 56 ± 15 . 9 μm , 29 . 00 ±
11 . 6 μm } and Chiu’s method { 22 . 12 ± 9 . 23 μm , 21 . 25 ± 5 . 98 μm } .
However, the accuracy of different methods is comparable at flat or

smooth retinal boundaries such as B 4 , B 7 and B 9 . Finally, since the

manual segmentation traces small bumps of the true boundaries

and the segmentation results by PDS are however very smooth,

the overall accuracy of PDS is the lowest among all the approaches

compared. 
In Table 4 and Fig. 12 , we can see that GDM is more accurate

nd robust compared with the other two methods for patholog-

cal data. Larger errors have been found at the last four bound-

ries B 6 , B 7 , B 8 and B 9 for all the segmentation methods. This is

ecause the dry age-related macular degeneration has led irreg-

larities to these retinal boundaries, making them less accurate

nd robust. The overall accuracy measured by the three quanti-

ies (SE, AE and HD) has also decreased compared with the coun-

erparts listed in Tables 3 . Chiu’s method using the Dijkstra’s al-

orithm can be deemed as a discrete approximation of the pro-

osed GDM. Therefore, its results are comparable to the GDM re-

ults at some flat retinal boundaries while much better than the

DS results. However, the fast sweeping algorithm used to solve

he Eikonal equation guarantees local resolution for the geodesic

istance, which reduces grid bias significantly and attains sub-pixel

ccuracy for the geodesic path result from GDM. In addition to the

ovel weight function proposed in (3.2) , GDM also resolves the

etrication problem caused by discrete graph methods and thus

an achieve more accurate results than Chiu’s method. 

In the next section, GDM is used to segment OCT vol-

me dataset that includes samples from ten healthy adult sub-

ects, named as Volumes 1–10, respectively. Dufour’s method and
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Fig. 15. Comparison between Dufour’s method (left), OCTRIMA3D (middle) and GDM (right) on the two B-scans in Fig. 14 . The segmentation lines by these methods are 

marked with red lines while the manual labelled ground truth with green lines. (For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 

Fig. 16. 3D comparison between Dufour’s method, OCTRIMA3D and GDM by segmenting the intra-retinal layers from Volume 4. Column (a)–(d) are respectively Dufour’s 

results, OCTRIMA3D results, GDM results and ground truth. Column (e)–(g) are respectively the segmentation results of the three methods, overlaid with ground truth. Rows 

1–6 represent the B 1 , B 2 , B 3 , B 5 , B 7 and overall retinal layer surfaces, respectively. 
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CTRIMA3D are also used to segment the same dataset for com-

arison purposes. In Fig. 13 , we demonstrate four representative

egmentation results using GDM on Volumes 1, 2, 7 and 9. 

Two representative B-scans in Volume 4 are shown in

ig. 14 and their segmentation results by the three approaches

re shown in Fig. 15 . Note that one B-scan retinal structures are

uite flat and the other contains the nonflat fovea region. Du-

our’s method has lower accuracy than OCTIMA3D and GDM for

oth cases. OCTRIMA3D extends Chiu’s method to 3D space and

mproves it by reducing the curvature in the fovea region using

he inter-frame flattening technique, so the method performs very
ell for both flat and nonflat retinal structures. However, there are

till some errors at B 5 . OCTRIMA3D is able to flatten B 1 and in

he meanwhile it also increases curvature of its adjacent bound-

ries such as B 5 , which might be the reason leading to the errors.

ompared with the other two, GDM results show less green lines,

erifying that the results are closer to ground truth and thus it is

he most accurate among the three compared. In addition to the

D visualisation, the 3D rendering of the results segmented by the

hree approaches on Volume 4 is given in Fig. 16 . The experiment

urthermore shows that Dufour’s results deviate more from ground

ruth, while OCTRIMA3D is better than Dufour’s method and is
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Table 5 

Comparison of SE ( μm ), AE ( μm ) and HD ( μm ) calculated using the results of different methods (Dufour’s method, OCTRMIA3D and GDM) 

and manually segmented ground truth, for the OPL-ONL ( B 5 ) layer surface in each of 10 OCT volumes. 

SE ( μm ) AE ( μm ) HD ( μm ) 

Volume # Dufour et al. OCTRIMA3D GDM Dufour et al. OCTRIMA3D GDM Dufour et al. OCTRIMA3D GDM 

1 −1.194 0.4559 0.3782 2.3816 1.3490 1.0720 25.688 15.273 10.449 

2 −2.170 −0.036 −0.128 4.5250 0.9089 0.7814 56.667 11.570 7.0938 

3 −2.576 0.4182 0.5983 3.6129 1.3237 1.0989 25.203 16.719 9.5326 

4 −2.296 1.0987 0.6774 3.8185 1.5175 1.0753 51.522 18.364 9.6151 

5 −1.680 1.3288 0.5909 4.3327 1.5012 0.9005 56.223 11.889 8.8419 

6 −2.623 1.0732 0.2974 4.0682 1.4838 0.9493 43.070 19.201 9.5281 

7 −2.326 0.5294 0.4529 3.1506 0.9378 0.7433 31.782 8.6701 6.4803 

8 −0.636 1.1355 0.6833 2.3955 1.4455 1.0069 25.481 17.930 11.685 

9 −4.206 0.3077 0.0859 4.5813 1.0780 0.7678 43.223 8.9694 5.7191 

10 −2.648 0.6701 0.2606 4.4903 1.0627 0.7877 41.017 11.666 10.961 

Table 6 

Comparison of SE ( μm ), AE ( μm ) and HD ( μm ) calculated using the results of different methods (Dufour’s method, OCTRMIA3D and GDM) 

and manually segmented ground truth, for the IS-OS ( B 7 ) layer surface in each of 10 OCT volumes. 

SE ( μm ) AE ( μm ) HD ( μm ) 

Volume # Dufour et al. OCTRIMA3D GDM Dufour et al. OCTRIMA3D GDM Dufour et al. OCTRIMA3D GDM 

1 −0.432 −0.148 −0.019 1.1013 0.5391 0.4437 16.559 4.7616 4.5805 

2 0.7476 −0.276 −0.079 2.0329 0.5539 0.3971 20.309 5.2093 3.7743 

3 −0.311 −0.291 −0.106 1.4347 0.5406 0.4629 18.432 2.9790 4.0176 

4 0.3652 −0.116 0.3363 1.6954 0.5271 0.4601 27.853 5.3672 2.7882 

5 0.6057 −0.098 0.0994 1.7567 0.4756 0.3500 26.556 3.7573 3.4150 

6 0.9825 −0.592 −0.139 2.4970 0.7247 0.4066 23.487 5.9301 3.9297 

7 −1.247 −0.536 0.0237 1.3895 0.7501 0.3716 10.016 3.1398 3.6980 

8 −0.311 −0.069 0.1740 1.0438 0.4053 0.3466 15.044 4.2301 4.3940 

9 −0.755 −0.111 0.1407 0.8068 0.5422 0.3939 3.5210 3.4263 3.3868 

10 −0.099 −0.220 0.1028 1.2941 0.5609 0.4246 13.313 3.1210 3.5361 

Table 7 

Comparison of OSE ( μm ), OAE ( μm ) and OHD ( μm ) calculated from the results of different methods (Dufour’s method, OCTRMIA3D and GDM) 

and manually segmented ground truth, for the overall retinal layer surfaces in each of 10 OCT volumes. 

OSE ( μm ) OAE ( μm ) OHD ( μm ) 

Volume # Dufour et al. OCTRIMA3D GDM Dufour et al. OCTRIMA3D GDM Dufour et al. OCTRIMA3D GDM 

1 −1.271 0.3607 0.4338 1.8358 1.1204 0.9538 17.486 9.3358 7.9163 

2 −1.161 0.0246 0.0640 2.5380 0.9652 0.7238 29.682 7.7987 6.1267 

3 −1.513 −0.052 0.3456 2.1470 0.9343 0.7838 19.985 8.3491 6.9920 

4 −1.431 0.4272 0.3560 2.5278 1.0374 0.8667 31.346 9.4042 7.3130 

5 −1.020 0.6369 0.5021 2.4119 1.0794 0.8289 32.607 8.6822 7.1379 

6 −1.434 0.4216 0.3969 2.6754 1.1371 0.8606 28.629 9.5267 7.2548 

7 −2.010 0.0059 0.3283 2.2458 0.9682 0.7407 21.788 7.0644 6.8279 

8 −1.031 0.5815 0.5785 1.7462 1.1063 0.9067 17.610 10.100 8.5112 

9 −1.951 0.0542 0.2014 2.1368 0.8771 0.6922 21.344 5.7482 5.4794 

10 −1.513 0.1022 0.2109 2.3315 0.8397 0.6596 24.841 6.3250 6.7132 
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comparable to GDM. GDM results cover less grey ground truth and

are the best. 

Tables 5 –7 contain the quantitative accuracy comparison of the

three methods on 10 OCT volumes. Table 5 shows the results for

layer boundary B 5 around the fovea region, while Table 6 presents

the results for boundary B 7 which is flatter and smoother. In

Table 5 , the SE values indicate that Dufour’s method produces

larger segmentation bias than OCTRIMA3D and GDM. The SE val-

ues by GDM are in the range of [ −0.128 μm 0.6833 μm ], show-

ing less variability than those by the other two methods. More-

over, GDM leads to the smallest AE and HD values in all 10 cases,

indicating that GDM is the most accurate among all the meth-

ods. Compared with Table 5, Table 6 shows a significant improve-

ment of all the methods. For example, the range of the HD val-

ues by Dufour’s method has dropped from [25.688 μm 56.667 μm ]

to [3.521 μm 27.853 μm ]. In addition, the accuracy gap between

OCTRIMA3D and GDM has been reduced, and in Volumes 3, 7 and
0 the HD values by OCTRIMA have even become smaller than

hose by GDM. These improvements are due to the fact that the

etinal layer boundary B 7 is flatter and smoother than B 5 . From the

alues of OAE and OHD in Table 7 , we observe that the accuracy of

DM is the highest for the segmentation of total retinal boundaries

rom each of 10 OCT volumes. 

The corresponding boxplots of Tables 5 –7 are shown in Fig. 17 .

hese boxplots show that the proposed GDM method performs

onsistently better, with higher accuracy and lower error rates for

oth flat and nonflat retina layers. There is little variation in perfor-

ance across different structures and even in the worst case sce-

ario the proposed method yields lower error rate than the aver-

ge performance of other methods. In Fig. 18 we present 3D plots

f the SE, AE and HD values computed by the three methods on

he 10 volumes. For GDM, its SE values are closer to zero and its

E and HD values remain smaller. The overall distribution of these

ata points also indicates that the GDM results are less oscillating.
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Fig. 17. Boxplots for SE ( μm ), AE ( μm ), HD ( μm ), OSE ( μm ), OAE ( μm ) and OHD ( μm ) obtained by different methods in Tables 5 –7 for 10 OCT volumes. 1st row: boxplots 

of Table 5 ; 2nd row: boxplots of Table 6 ; 3rd row: boxplots of Table 7 . 
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a  
e can thus conclude that GDM performs the best among all the

ethods compared for extracting intra-retinal layer layers from 3D

CT volumes. 

.5. Computation time 

In this section, the performance of the different approaches in

erms of the computation time is demonstrated. We implemented

DS, Chiu’s method and GDM using Matlab 2014b on a Windows

 platform with an Intel Xeon CPU E5-1620 at 3.70 GHz and 32 GB

emory. For a 633 × 496 sized B-scan, with initialisation close to

he true retinal boundaries, it takes 3.625 s (500 iterations) for PDS

o detect two parallel boundaries. Chiu’s method needs 1.962 s to

etect one layer boundary, while GDM only takes 0.415 s. Note that

he time complexity of Chiu’s graph search method is O (| E | log (| V |)),

here | V | and | E | are the number of nodes and edges and | V | = MN

nd | E| = 8 MN in boundary detection in an image. Hence the time

omplexity of the method is O ( MNlog ( MN )). In contrast, our GDM

olved using fast sweeping has linear complexity of O ( MN ), which

s more efficient than Chiu’s method. For 3D segmentation, OCTR-

IA3D explores spatial dependency between two adjacent B-scans

nd applies Chiu’s method to each 2D slice independently. OC-

RMIA3D is thus able to track retinal boundaries in 3D OCT im-

ges efficiently. It was reported in [25] that the processing time

f the OCTRMIA3D for the whole OCT volume of 496 × 644 × 51

oxels was 26.15 s, which is faster than our GDM (40.25 s is used

o segment a 496 × 633 × 10 sized volume). Finally, Dufour’s graph

ethod needs 14.68 s to detect the six intra-retinal layer bound-

ries on a 496 × 633 × 10 sized volume. Dufour’s method was im-
lemented using a different programming language (C) and it de-

ected different number of retinal layers from that of GDM, so

omparison cannot be made between the two methods. 

. Conclusion 

In this paper, we presented a new automated retinal layer seg-

entation method based on the geodesic distance for both 2D and

D OCT images. The method integrates horizontal and vertical gra-

ient information and can thus account for intensity changes in

he both directions. Furthermore, the exponential weight function

mployed within the approach enhances the foveal depression re-

ions and weak retinal layer boundaries. As a result, the proposed

ethod is able to segment complex retinal structures with large

urvatures and other irregularities caused by pathologies. Exten-

ive numerical results, validated with ground truth, demonstrate

he effectiveness of proposed method for segmenting both normal

nd pathological OCT images. The proposed method has achieved

igher segmentation accuracy than the state of the art methods

ompared, such as the parametrised active contour model and the

raph theoretic based approaches. Ongoing research includes inte-

rating the segmentation framework into a system for detection

nd quantification of retinal fractures and other eye diseases. 

cknowledgement 

This research has received funding from the Biotechnology

nd Biological Sciences Research Council (BBSRC) and Medical



172 J. Duan et al. / Pattern Recognition 72 (2017) 158–175 

OverallB9B8B7

Target Intra-retinal Layer Surface

B5B4B3B2B1

0

Volume #

5

2

3

-5

-4

-3

-2

-1

0

1

10

S
ig

n
ed

 E
rr

o
r 

(S
E

)
Dufour et al.
OCTRIMA3D
GDM

OverallB9B8B7

Target Intra-retinal Layer Surface

B5B4B3B2B1

0
Volume #

5

5

4

0

2

3

1

10

A
b

so
lu

te
 E

rr
o

r 
(A

E
)

Dufour et al.
OCTRIMA3D
GDM

OverallB9B8B7

Target Intra-retinal Layer Surface

B5B4B3B2B1

0

Volume #

5

0

10

20

30

40

50

60

10

H
au

sd
o

rf
f 

D
is

ta
n

ce
 (

H
D

)

Dufour et al.
OCTRIMA3D
GDM

Fig. 18. 3D plots of SE ( μm ), AE ( μm ) and HD ( μm ) obtained using Dufour’ method, OCTRMIA3D and GDM on 10 OCT volumes. 
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Appendix 

We solve the Eikonal equation using the fast sweeping algo-

rithm [31] for OCT segmentation. Consider the following gener-

alised version of the Eikonal equation: 

| ∇d(x ) | = f (x ) , x \ � and x ∈ R 

m (A.1)
ith 

(x ) = 0 , x ∈ � ⊂ R 

m . (A.2)

bove � ⊂ R 

2 and � ⊂ R 

3 respectively correspond to 2D and 3D

ases. In OCT segmentation, � = { s 2 } where { s 2 } is a seed point in

D or multiple seed points in 3D, and f ( x ) is W 

−1 (x ) where the

eight function W is defined in (3.2) . For 2D implementation, we

se x i , j to denote a pixel point in the computational domain �, and

 i , j to denote the numerical solution at x i , j . For 3D implementation,

e use x i , j , k to denote a voxel point in �, and d i , j , k to denote the
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umerical solution at x i , j , k . The pixel or voxel size is set to 1 for all

he cases. 

1. 2D Implementation 

The 2D Godunov upwind difference scheme is used to discretise

A.1) as follows 

(d n i, j − d n xmin ) 
+ ]2 + 

[
(d n i, j − d n ymin ) 

+ ]2 = f 2 i, j,k , (A.3) 

here d n 
xmin 

= min (d n 
i, j+1 

, d n 
i, j−1 

) , d n 
ymin 

= min (d n 
i +1 , j 

, d n 
i −1 , j 

) and 

 

+ = 

{
x x > 0 

0 x ≤ 0 

. (A.4) 

oundary conditions need to be handled appropriately for (A.3) in

he computational grid space �. One-sided upwind difference is

sed for each of 4 boundaries in the grid space. For example, at

he left boundary, a one-sided difference along the x direction is

omputed as 

(d n i, 1 − d n i, 2 ) 
+ ]2 + 

[
(d n i, 1 − d n ymin ) 

+ ]2 = f 2 i, 1 . 

f we denote a = d n 
xmin 

and b = d n 
ymin 

, numerically solving the Eq.

A.3) with its boundary condition needs to iteratively update 

 

n +1 
i, j 

= min (d n i, j , ̃
 d i, j ) , (A.5)

here 

˜ 

 i, j = 

{ 

min ( a, b ) + f i, j | a − b | ≥ f i, j 

a + b 
√ 

2 f 2 
i, j 

−( a −b ) 
2 

2 | a − b | < f i, j 

. (A.6) 

nitialisation . The hard constraint d(x ) = 0 , x ∈ � in (A.2) should be

atisfied over iterations. For initialisation, we assign exact values

(x ) = 0 for the pixel points on �. These values are forced to be

eros at each iteration to satisfy such hard constraint. For the rest

f pixel points in �, we assign large positive values for d ( x ). These

alues will be updated later. 

Gauss–Seidel iterations with alternating sweeping orderings .

A.5) is not analytical so iterations are needed to solve it nu-

erically. The Gauss–Seidel iterative method is used here for fast

onvergence. There are different sweeping schemes that can be

pplied to Gauss–Seidel, such as the red-black sweeping, Lexico-

raphic ordering sweeping, etc. In [31] , the whole domain � is

wept with the four alternating orderings repeatedly 

(1) i = 1 : M, j = 1 : N; (2) i = M : 1 , j = N : 1 ;
(3) i = 1 : M, j = N : 1 ; (4) i = M : 1 , j = 1 : N. 

ote that for simple geometry of � it may be sufficient for (A.5) to

onverge after applying the sweeping only once. However, for non-

niform problems and/or complex geometry, repeated sweeping

ight be required in order for (A.5) to converge. 

2. 3D Implementation 

The 3D Godunov upwind difference scheme is used to discretise

A.1) as follows 

(d n i, j,k − d n xmin ) 
+ ]2 + 

[
(d n i, j,k − d n ymin ) 

+ ]2 + 

[
(d n i, j,k − d n zmin ) 

+ ]2 = f 2 i, j,k . 

(A.7) 

bove, d n 
xmin 

= min (d n 
i, j+1 ,k 

, d n 
i, j−1 ,k 

) , d n 
ymin 

= min (d n 
i +1 , j,k 

, d n 
i −1 , j,k 

) ,

 

n 
zmin 

= min (d n 
i, j,k +1 

, d n 
i, j,k −1 

) and x + is defined as (A.4) . Boundary

onditions need to be handled as well in the grid space �. One-

ided upwind difference is used for each of the 6 boundary faces

f the grid space. For example, at the left boundary face, a one-

ided difference along the x direction is computed as 

(d n i, 1 ,k − d n i, 2 ,k ) 
+ ]2 + 

[
(d n i, 1 ,k − d n ymin ) 

+ ]2 + 

[
(d n i, 1 ,k − d n zmin ) 

+ ]2 = f 2 i, 1 ,k
 

n 
xmin 

, d n 
ymin 

and d n 
zmin 

are then sorted in an increasing order and

he sorted version is recorded as a 1 , a 2 and a 3 . So, the unique so-

ution to (A.7) is given as follows: 

 

n +1 
i, j,k 

= min (d n i, j,k , 
˜ d i, j,k ) , (A.8)

here ˜ d i, j,k is a piecewise function containing three parts 

˜ 

 i, j,k = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 

3 

( a 1 + a 2 + a 3 

+ 

√ 

3 f 2 
i, j,k 

− ( a 1 − a 2 ) 
2 − ( a 1 − a 3 ) 

2 − ( a 2 − a 3 ) 
2 
)

1 
2 

(
a 1 + a 2 + 

√ 

2 f 2 
i, j,k 

− ( a 1 − a 2 ) 
2 
)

a 1 + f i, j,k 

. 

he three parts correspond to the following intervals, respectively 

f 2 i, j,k ≥ ( a 1 − a 3 ) 
2 + ( a 2 − a 3 ) 

2 , 

( a 1 − a 2 ) 
2 ≤ f 2 i, j,k < ( a 1 − a 3 ) 

2 + ( a 2 − a 3 ) 
2 , 

f 2 i, j,k < ( a 1 − a 2 ) 
2 . 

To solve (A.8) , which is not in analytical form, the fast Gauss–

eidel iteration with alternating sweeping orderings is used. For

nitialisation, the value of grid points on � is set to zero, and this

alue is fixed in later calculations. The rest of the points are set

o large values, and these values will be updated later. The whole

D grid is traversed in the following orders for the Gauss–Seidel

teration 

(1) i = 1 : M, j = 1 : N, k = 1 : H; (2) i = M : 1 , j = N : 1 , k = H : 1 ;
(3) i = M : 1 , j = 1 : N, k = 1 : H; (4) i = 1 : M, j = N : 1 , k = H : 1 ;
(5) i = M : 1 , j = N : 1 , k = 1 : H; (6) i = 1 : M, j = 1 : N, k = H : 1 ;
(7) i = 1 : M, j = N : 1 , k = 1 : H; (8) i = M : 1 , j = 1 : N, k = H : 1 . 
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