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Surface reconstruction from point clouds using a
novel variational model

Jinming Duan, Ben Haines, Wil O. C. Ward and Li Bai

Abstract Multi-view reconstruction has been an active research topic in the com-
puter vision community for decades. However, state of the art 3D reconstruction
systems have lacked the speed, accuracy, and ease to use properties required by the
industry. The work described in this paper is part of the effort to produce such a
multi-view reconstruction system for a UK company. A novel variational level set
method is developed for reconstructing implicit surfaces from unorganised point
clouds. A distance function is calculated for the point cloud using a new 3D fast
sweeping algorithm and used to find a good initial surface close to the point cloud.
A novel variational model is then used to evolve this initial surface. The model
consists of three energy terms to ensure accurate and smooth surface reconstruction
whilst preserving the small details of the object and increasing reconstruction speed.
The model also completely eliminated the need for reinitialisation associated with
the level set method. Implementation details of the variational model are given and
the functions of the three energy terms of the model are illustrated through numer-
ical experiments. Gradient descent optimisation is used to find the minimum of the
proposed variational model and accurately reconstruct the surface. The proposed
method is validated and experiments show that the proposed method outperformed
the state of the art surface reconstruction approaches.
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1 Introduction

To reconstruct an accurate and smooth 3D surface from a point cloud is a chal-
lenging problem as the point cloud consists of scattered points, unorganised and
unconnected. In general, there exist two categories of surface representations: ex-
plicit or implicit representation. Explicit representation [1–3] describes the location
of points on a surface as well as the local geometry of a surface in a explicit manner.
It can be accurate, but less robust and less flexible in handling arbitrary and dynam-
ically changing surface topology. Implicit representation [4–7] usually considers a
surface as the zero level set of a higher dimensional implicit function (i.e. level set
function). In addition to the topological flexibility and robustness, it is more suitable
for noisy and non-uniform point clouds [6, 7].

The level set method [8] is a powerful technique to track dynamic interfaces.
Surface reconstruction methods [4, 5] using level sets involves the construction of
an initial surface which then evolves towards the dataset according to a set of partial
differential equations. One of the most successful level set based surface recon-
struction methods was proposed by Zhao et al in [4, 5]. Though their model works
quite well, there are some disadvantages. First, periodical reinitialisation is needed
in their model to keep the evolving level set close to the signed distance function to
maintain stable surface evolution and desirable results. However, this procedure is
tedious, expensive and may even cause the final surface to shrink to a undesirable
position [9]. Second, their model is non-convex, so the results are sensitive to the
initial condition. A fast tagging algorithm is developed in [5] to make the initial sur-
face lie close to the true surface. However, if the sampling of the data contains small
features or concave regions, the evolving surface often gets stuck in local minimum
even if the initial surface is very close to the true surface.

In this paper, a novel variational model is introduced for surface reconstruction
from point clouds which overcomes the problems with the existing implicit recon-
struction methods. A explicit 3D fast sweeping algorithm is presented extending the
2D version [10] to construct a distance function for the point cloud and used to find
the 3D volume enclosed by the point cloud. A good initial surface close to the point
cloud is then found for the variational model to evolve. The variational model con-
sists of three energy terms to ensure the reconstruction (1) is smooth and maintains
a signed distance function; (2) preserves the small details of the object; (3) proper
reconstruction of concave object regions and speed up surface evolution. Gradient
descent optimisation is then used to find the minimum of the proposed variational
model and accurately reconstruct the surface. Comparison with popular reconstruc-
tion methods, including the Poisson method [11], shows that the proposed method
has outperformed the state of the art methods.
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2 Preprocessing

2.1 Distance function for point cloud using fast sweeping

Given an unorganised 3D point cloud {xi}, its distance function d(x) satisfies the
following Eikonal equation

|∇d(x)|= f (x),x ∈Ω\{xi} (1)

with f (x) = 1 and
d(xi) = 0,x ∈ {xi}

(1) is a typical partial differential equation and it can be solved efficiently by using
fast sweeping algorithm proposed by Zhao for two-dimensional (2D) problems [10].
In this paper, the 2D fast sweeping algorithm is extended to 3D. To do so, the Go-
dunov upwind difference scheme is used to discretise (1) as follows:[
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in the computational grid space, and one-sided upwind difference is used for each
of the 6 boundary faces of the grid space. For example, at the left boundary face, a
one-sided difference along the x direction is computed as follows[
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recorded as a1, a2 and a3. So, the unique solution to (2) is given as follows:
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where d̃i, j,k is a piecewise function containing three parts
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f 2
i, j,k < (a1−a2)

2

To solve (3), which is not in analytical form, the fast Gauss-Seidel iteration with
alternating sweeping orderings is used. For initialization, the points of the unorgan-
ised point cloud are set to zero, and the rest of the points are set to large values.
Specifically, the whole 3D grid is traversed in the following orders.

(1) i = 1 : M, j = 1 : N,k = 1 : H; (2) i = M : 1, j = N : 1,k = H : 1

(3) i = M : 1, j = 1 : N,k = 1 : H; (4) i = 1 : M, j = N : 1,k = H : 1

(5) i = M : 1, j = N : 1,k = 1 : H; (6) i = 1 : M, j = 1 : N,k = H : 1

(7) i = 1 : M, j = N : 1,k = 1 : H; (8) i = M : 1, j = 1 : N,k = H : 1

(a) (b) (c) (d)
Fig. 1 Calculating the distance function of the original point cloud. (a)-(b) are 2D and 3D point
cloud respectively. (c) is the distance function for (a). (d) is a slice of the distance function for (b).

2.2 Calculating volumetric data from distance function

After eight directional sweeping using fast Gauss-Seidel iteration, the distance func-
tion d(x) in the Eikonal equation (1) can be solved. Fig. 1 shows two examples for
2D and 3D data. d(x) is zero at the points of the original point cloud and its values
are very small at the points close to the original point cloud, and very large at the
points far away from the original point cloud. Based on this, a closed annular binary
image I(x), shown in the first two images in Fig. 2, can be obtained by thresholding
the distance function d(x).

With the annular binary image I(x), the fast sweeping algorithm is again applied
to find the volumetric data u(x) enclosed by the point cloud, as shown in the last two
images in Fig. 2. First, f (x) = I(x) is taken in the right-hand side of (3.1) instead of
f (x) = 1. Second, in order to calculate the objective function d(x) (it is not distance
function when f (x) 6= 1) in (1), zero values are assigned to the grid points in the 6
boundary faces and very large values assigned to other grid points for eight direc-
tional sweeping Gauss-Seidel iterations. Once the objective function d(x) is found,
so the volumetric data u(x) = d(x). The volumetric data u(x) is used to find a good
initial surface to speed up variational level set evolution in section 2.3.
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(a) (b) (c) (d)
Fig. 2 Obtain volumetric data from the annular binary image. (a)-(b) are two annular binary im-
ages. (c)-(d) are corresponding volumetric data of (a) and (b) respectively. (b) and (d) are one slice
of its corresponding 3D data.

2.3 Surface initialization using volumetric data

The volumetric data u(x) is first thresholded to obtain a new binary image s(x)
shown in the first two images in Fig. 3. A simple algorithm (such as March Cube)
can be employed to find all the points {x̃i} on the boundary of the object in the
binary image s(x). These new points {x̃i} are very close to the original unorganised
point cloud {xi}. The fast sweeping algorithm is applied again on the new point
cloud {x̃i} to obtain a new signed distance function φ0 using the sign information
obtained from the binary image s(x) (i.e. inside is negative and outside is positive)
as a good initialization for the level set evolution in section 3.

(a) (b) (c) (d)
Fig. 3 Calculate a signed distance function from the binary image. (a)-(b) are two binary images.
(c)-(d) are corresponding signed distance maps of (a) and (b) respectively. (b) and (d) stand for one
slice of the 3D data.

3 The proposed method

Minimisation of the following variational energy functional is proposed to recon-
struct the surface from point clouds {xi}.

E(φ ,c1,c2) = ER(φ)+λEI(φ ,c1,c2)+βEB(φ) (4)

Each term of the energy functional targets a different aspect of the problem. The
first term, ER is a regularization term which keeps the surface of the object smooth
while keeping the level set function φ as a signed distance function. The second data
fitting term EI incorporates the information derived from the dataset, where c1 and
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c2 represent the mean values inside and outside of the zero level set of φ . The third
balloon force term EB includes the area/volume information inside the zero level set
of φ . The details of the energy terms in (4) are given as follows.

ER(φ) =
∫

Ω

d(x)|∇H(φ)|+ µ

2

∫
Ω

(|∇φ |−1)2 (5)

where d(x) is the distance function calculated from the original point cloud {xi} in
section 2.1. The first term in this functional is equivalent to GAC (geodesic active
contour) model [12]. It is the weighted (by d(x)) length/area of the boundary by us-
ing the co-area formula for TV (total variation) [13]. The second term keeps level set
function φ as a sign distance function, thus eliminating the need of reinitialization
and producing desirable reconstruction. µ is positive penalty parameter controlling
the degree of penalizing the deviation of φ from a signed distance function. Larger
µ leads to more similarity between φ and signed distance function. (5) improves
methods in [5] by using a variational level set without reinitialisation.

EI(c1,c2,φ) =
∫

Ω

Q(c1,c2)H(φ) (6)

where Q(c1,c2) = (c1− u(x))2− (c2− u(x))2, and u(x) is the 2D/3D image com-
puted from section 2.2. This term follows the work of the two-phase piecewise
constant Chan-Vese model [14] and encourage each region of the reconstruction to
have an approximately constant value. By incorporating the region-based informa-
tion, this term has much larger convergence range. Thus it can help ease some local
minimum problems and improve the accuracy of reconstruction by capturing small
features of the object with homogeneous intensity values. The penalty parameter λ

on this term in (4) should be positive.

EB(φ) =
∫

Ω

d(x)H(−φ) (7)

This energy functional is the weighted area/volume of region Ω
−
φ
, {x : φ(x)< 0}.

This term is introduced to speed up surface evolution as well as segment concave
objects. The parameter β on this term in (4) can be positive or negative depending on
whether inside or outside of the zero level set is defined as positive. In this paper, if
the initial boundary is placed outside the object, the coefficient take positive values,
so that the zero level set points can shrink during level set evolution. If the initial
boundary is placed inside the object, the coefficient take negative values in order to
expand the boundary.

Equation (4) is a multivariate minimization problem usually solved by an opti-
mization procedure. First φ is fixed to optimise c1 and c2 as follows

c1 =

∫
Ω

uH(φ)∫
Ω

H(φ)
; c2 =

∫
Ω

u(1−H(φ))∫
Ω
(1−H(φ))
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Then c1 and c2 are fixed using the following gradient descent flow starting with
φ = φ0 in section 2.3 to minimize (4)

∂φ

∂ t
=

(
∇·
(

d
∇φ

|∇φ |

)
−λQ(c1,c2)+βd

)
δ (φ)+µ

(
∆φ −∇·

(
∇φ

|∇φ |

))
(8)

In practice, the Heaviside function H(φ) and Dirac function δ (φ) in (4) and (8) are
usually approximated by their regularized version with a small positive regularized
number ε

Hε(φ) =
1
2
+

1
π

arctan
(

φ

ε

)
δε(φ) =

1
π

ε

ε2 +φ 2

4 Experimental results

In this section, some 2D and 3D reconstruction results are presented. In Fig. 4, a 2D
contour is given of the dataset shown in Fig. 1(a). The initial contour obtained in the
preprocessing step is very close to the true surface, which can speed up convergent.
As the evolution proceeds, the reconstruction by Zhao’s method [4,5] loses the small
features of the original data (i.e. the two convex parts). However, the term (6) in the
proposed model is able to preserve these features.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 4 Compare Zhao’s method [4, 5] with the proposed model (4) with β = 0 in 2D. (a): same
initialisation for methods to be compared; (b)-(d): intermediate and final results by Zhao’s method;
(e)-(g): intermediate and final results by the proposed method with β = 0.

Fig. 5 shows the reconstructed 3D surface of the Bunny point cloud shown in
Fig. 1(b). Both Zhao’s and Poisson failed to reconstruct the Bunny’s ears and feet,
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while the proposed method succeeded. The reconstruction by Poisson also loses
some texture and looks smoother than that of the proposed method. This demon-
strates the effectiveness of the volumetric data fitting term (6) in the proposed model.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5 Comparison with state of the art. (a): same initialisation for models to be compared; (b)-(d):
intermediate and final results by Zhao’s method [4,5]; (e)-(g): intermediate and final results by the
proposed model (4) with β = 0; (h): Reconstruction by Poisson [11].

Fig. 6 Effectiveness of the balloon force term (7) in the proposed model using 2D and 3D datasets.
1st column: original data points; 2nd column: initialisation obtained in the first step; 3rd column:
results by Zhao’s method; 4th column: results by the proposed model (4) without using balloon
force term (i.e. β = 0 in (4)); 5th column: results by the proposed model (4).

Fig. 6 shows the reconstruction results of a 2D concave object and a 3D human
hand that contains small details (i.e. fingers) and concave regions (i.e. the spaces
between fingers). Zhao’s method gets stuck in the concave region and also loses
the fingers. The proposed model within only (6) term can preserve the fingers and
partially go down the concave region. The proposed model with both terms (6) and
(7) succeeds in preserving all features as well as the concave regions in both 2D and
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3D cases. This validates the capability of the balloon force term (7) in the proposed
model.

(a) (b) (c) (d)
Fig. 7 Comparison with Poisson. (a) and (b) are reconstructions by the proposed model; (c) and
(d) are reconstructions by the Possion method; (b) and (d) are zoomed-in version of (a) and (c),
with the original data points added.

Fig. 7 shows that Poisson result is smoother than that of the proposed method,
but some small details/texture, i.e. palm prints, are also smeared by the method.
Fig. 7(b) and (d) showa that Poisson result also misses several original data points,
and the reconstructed fingers become thinner than those by the proposed method.
The proposed method thus performs better than the Poisson method.

5 Conclusion

In this paper, a novel variational level set method is proposed to reconstruct implicit
surfaces from unorganised point clouds for industrial applications. Implementation
details of the variational model are given and the functions of the three energy terms
of the model are illustrated through numerical experiments. Major advantages of the
proposed method over existing approaches are that it produces a smooth reconstruc-
tion whilst preserving the small details of the original object. It also handles concave
regions of the object well, and without the need for reinitialisation and getting stuck
at the local minimum commonly associated with the implicit reconstruction meth-
ods. Experimental results show that the proposed method outperforms the state of
the art methods.
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6 Appendix

In this section, in order to evolve level set function φ in (8), we present the discreti-
sation for ∇ ·

(
d ∇φ

|∇φ |

)
and ∇ ·

(
∇φ

|∇φ |

)
in three-dimensional case based on the finite

difference scheme. In detail, let Ω →RMNL denote the three-dimensional grid space
with size MNL. The second order coupled (with distance function d) curvature term
∇ ·
(

d ∇φ

|∇φ |

)
at voxel (i, j,k) can be discretised as follows
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2

)2
+
(

∇0
yφi, j,k+ 1

2

)2
+ ε2

−di, j,k− 1
2

∂−z φi, j,k√(
∇
−
z φi, j,k

)2
+
(

∇0
xφi, j,k− 1

2

)2
+
(

∇0
yφi, j,k− 1

2

)2
+ ε2

(9)

where ε is a small positive number to avoid division by zero. Note that the half-
point difference scheme is used here for (9) in order to satisfy rotation-invariant
characteristics. The distance function d on half-points of voxel (i, j,k) are given as

di, j+ 1
2 ,k

=
di, j+1,k+di, j,k

2 , di, j− 1
2 ,k

=
di, j−1,k+di, j,k

2

di+ 1
2 , j,k

=
di+1, j,k+di, j,k

2 , di− 1
2 , j,k

=
di−1, j,k+di, j,k

2

di, j,k+ 1
2
=

di, j,k+1+di, j,k
2 , di, j,k− 1

2
=

di, j,k−1+di, j,k
2

The first order forward ∂+
x and backward ∂−x discrete derivatives along x, y and z

directions can be defined as follows

∂+
x φi, j,k = φi, j+1,k−φi, j,k, ∂−x φi, j,k = φi, j,k−φi, j−1,k

∂+
y φi, j,k = φi+1, j,k−φi, j,k, ∂−y φi, j,k = φi, j,k−φi−1, j,k

∂+
z φi, j,k = φi, j,k+1−φi, j,k, ∂−z φi, j,k = φi, j,k−φi, j,k−1

The central differences are applied to approximate the following first order discrete
derivatives on the half-points of voxel (i, j,k) in (9).
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∇0
yφi, j+ 1

2 ,k
=

φi+1, j+1,k+φi+1, j,k−φi−1, j+1,k−φi−1, j,k
4

∇0
z φi, j+ 1

2 ,k
=

φi, j+1,k+1+φi, j,k+1−φi, j+1,k−1−φi, j,k−1
4

∇0
yφi, j− 1

2 ,k
=

φi+1, j,k+φi+1, j−1,k−φi−1, j,k−φi−1, j−1,k
4

∇0
z φi, j− 1

2 ,k
=

φi, j,k+1+φi, j−1,k+1−φi, j,k−1−φi, j−1,k−1
4

∇0
xφi+ 1

2 , j,k
=

φi+1, j+1,k+φi, j+1,k−φi+1, j−1,k−φi, j−1,k
4

∇0
z φi+ 1

2 , j,k
=

φi+1, j,k+1+φi, j,k+1−φi+1, j,k−1−φi, j,k−1
4

∇0
xφi− 1

2 , j,k
=

φi, j+1,k+φi−1, j+1,k−φi, j−1,k−φi−1, j−1,k
4

∇0
z φi− 1

2 , j,k
=

φi, j,k+1+φi−1, j,k+1−φi, j,k−1−φi−1, j,k−1
4

∇0
xφi, j,k+ 1

2
=

φi, j+1,k+1+φi, j+1,k−φi, j−1,k+1−φi, j−1,k
4

∇0
yφi, j,k+ 1

2
=

φi+1, j,k+1+φi+1, j,k−φi−1, j,k+1−φi−1, j,k
4

∇0
xφi, j,k− 1

2
=

φi, j+1,k+φi, j+1,k−1−φi, j−1,k−φi, j−1,k−1
4

∇0
yφi, j,k− 1

2
=

φi+1, j,k+φi+1, j,k−1−φi−1, j,k−φi−1, j,k−1
4

In order to discretise the curvature term ∇ ·
(

∇φ

|∇φ |

)
, we set di, j+ 1

2 ,k
= di, j− 1

2 ,k
=

di+ 1
2 , j,k

= di− 1
2 , j,k

= di, j,k+ 1
2
= di, j,k− 1

2
= 1 in (9).

Fig. 8 3D grid space. The blue points represent different voxels, while the yellow points are the
half points defined between each two voxels. The figure illustrates how to calculate the discrete
differential operators used in equation (9).
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