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Abstract. In the recent years, convolutional neural networks have
transformed the field of medical image analysis due to their capacity
to learn discriminative image features for a variety of classification and
regression tasks. However, successfully learning these features requires a
large amount of manually annotated data, which is expensive to acquire
and limited by the available resources of expert image analysts. There-
fore, unsupervised, weakly-supervised and self-supervised feature learn-
ing techniques receive a lot of attention, which aim to utilise the vast
amount of available data, while at the same time avoid or substantially
reduce the effort of manual annotation. In this paper, we propose a novel
way for training a cardiac MR image segmentation network, in which
features are learnt in a self-supervised manner by predicting anatomical
positions. The anatomical positions serve as a supervisory signal and do
not require extra manual annotation. We demonstrate that this seem-
ingly simple task provides a strong signal for feature learning and with
self-supervised learning, we achieve a high segmentation accuracy that
is better than or comparable to a U-net trained from scratch, especially
at a small data setting. When only five annotated subjects are available,
the proposed method improves the mean Dice metric from 0.811 to 0.852
for short-axis image segmentation, compared to the baseline U-net.

1 Introduction

Cardiac MR image segmentation plays a central role in characterising the struc-
ture and function of the heart. Quantitative phenotypes derived from the seg-
mentations provide important biomarkers for diagnosing and managing cardio-
vascular diseases. In the recent years, convolutional neural networks have greatly
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advanced the performance of cardiac MR image segmentation due to their capac-
ity in learning discriminative image features for the segmentation task [1-3].
Most successful methods are fully supervised and rely on a large amount of
annotated data to learn the features. However, annotated medical imaging data
may not always be available. The annotations are expensive to acquire and often
limited by the available resource of expert image analysts. To address this chal-
lenge, we propose a novel way for training a cardiac MR image segmentation
network, which formulates a self-supervised task for feature learning and allevi-
ates the cost of data annotation.

There are two major contributions of this work. First, the proposed method
learns image features from anatomical positions automatically defined by cardiac
chamber view planes, which is a novel pretext task for self-supervised learning
and provides a strong supervisory signal. Importantly, the chamber view plane
information is freely available from standard cardiac MR scans, which means
the method has the potential to be extended to a clinical setting, where a lot
of unannotated MR scans stored on the PACS in hospitals can be utilised for
feature learning. Second, we demonstrate the learning performance on two tasks,
namely short-axis image and long-axis image segmentations. For both tasks,
self-supervised learning demonstrates a strong boost to segmentation accuracy,
especially at a small data setting.

Related Works: To address the challenge of limited data annotations, there
is increased interest in developing methods that do not require a large amount
of annotations for feature learning. Directions of research include transfer learn-
ing, domain adaptation, semi-supervised, weakly-supervised, unsupervised and
self-supervised learning [4]. Here, we focus on self-supervised learning, which
formulates a pretext task based on unannotated data for feature learning.

For natural image and video analysis problems, a number of pretext tasks
have been explored, including prediction of image rotation [5], relative position
[6], colorisation [7] and image impainting [8] etc. In medical imaging domain, self-
supervised learning has also been explored but to a less extent. Jamaludin et
al. proposed a pretext task for subject identification [9]. A Siamese network was
trained to classify whether two spinal MR images came from the same subject or
not. The pretrained features were used to initialise a disease grade classification
network. Ross et al. defined re-colourisation of surgical videos as a pretext task
and used the pretrained features to initialise a surgical instrument segmentation
network [10]. Tajbakhsh et al. used rotation prediction as a pretext task and the
self-learnt features were transferred to lung lobe segmentation and nodule detec-
tion tasks [11]. Different from previous works in the medical imaging domain, we
propose a novel pretext task, which is to predict anatomical positions. In par-
ticular, we leverage the rich information encoded in the cardiac MR scan view
planes and DICOM headers to define the anatomical positions for the task.
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2 Methods

Here we describe the cardiac MR view planes, the pretext task for self-supervised
learning and architectures for transferring a self-trained network to a new task.

Long-axis 4Ch view

short=axis,
mid slice

(a) Cardiac MR view planes (b) Short-axis image (c) Long-axis 4Ch image

Fig. 1. Cardiac MR view planes and anatomical positions. (a) Short-axis and long-axis
view planes with regard to the heart. (b) Short-axis image with overlaid 2Ch and 4Ch
view planes (yellow lines) and anatomical positions defined by view planes (coloured
boxes). (¢) Long-axis 4Ch view image with overlaid 2Ch and mid short-axis view planes
and anatomical positions. (Color figure online)

Cardiac MR View Planes: A standard cardiac MR scan consists of images
acquired at different angulated planes with regard to the heart, including short-
axis, long-axis 2 chamber (2Ch, vertical long-axis), 4 chamber (4Ch, horizontal
long-axis) and 3 chamber (3Ch) views. They are used for evaluating different
anatomical regions of the heart. For example, the short-axis view shows the
cross-sections of the left ventricle (LV) and right ventricle (RV). The long-axis
views show the septal and lateral walls of the ventricles, as well as the atrial
chambers, including the left atrium (LA) and right atrium (RA). Figurel(a)
illustrates how the short-axis and long-axis 2Ch, 4Ch views are oriented with
regard to the heart.

Most previous works on cardiac MR image segmentation [1-3] consider short-
axis and long-axis views separately and disregard the relative orientation of
different views. Typically, images from a specific view and the corresponding
label maps are used to train a segmentation network from scratch. In this work,
we propose that the relative orientation of short-axis and long-axis views and
the anatomical positions, defined by the view planes, can be used to formulate a
pretext task for training the network in a self-supervised manner and increasing
data efficiency.

Self-Supervised Learning (SSL): Figure 1(b) shows a short-axis image, with
the overlaid 2Ch view and 4Ch view (yellow lines). As it shows, the 2Ch view
bisects both the LV and RV, whereas the 4Ch view bisects the LV. They intersect
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at the LV. Along the chamber view lines, we define nine anatomical positions,
represented by bounding boxes, including the intersection, two boxes on the left,
two on the right, two at the anterior and two at the posterior. The orientations
from left to right and from posterior to anterior are available from the DICOM
headers. The pretext task is to predict the anatomical positions defined by these
nine bounding boxes. The intuition here is that for the network to recognise
these anatomical positions, it has to learn features for understanding not only
where the left and right ventricles roughly are but also what their neighbouring
regions look like. The learnt features can be transferred to a related but more
demanding task, which is accurate segmentation of the ventricles.

Similarly, for a long-axis 4Ch view image, we can overlay the 2Ch view and
mid short-axis view on it, shown by Fig. 1(c). Along the 2Ch view and mid short-
axis view lines, we define nine anatomical positions, including the intersection,
two boxes on the left, two on the right, two at the superior and two at the infe-
rior. The pretext task for long-axis image analysis is to predict these anatomical
positions. To learn from the pretext task, we train a 10-way segmentation net-
work, which segments the nine bounding boxes and the background. A standard
U-net architecture [12] is used, which consists of the encoder part, decoder part,
skip connections between them and the task head (the last convolutional layer),
depicted by Fig.2(a). Cross-entropy is used as the loss function.

sklp sklp sklp Sklp
Task 1
Task 1 Task 2 Task 2
Task 2

SSL+Decoder SSL+A11 SSL—I—MultlTask

Fig. 2. Network architectures for self-supervised learning (SSL) and three different
ways for transfer learning. The gray area in (b) denotes the freezed encoder.

Transfer Learning: After the network is self-trained on the pretext task (task
1), it is transferred to a new task (task 2), which is accurate segmentation of
the anatomical structures, e.g. the LV cavity, myocardium and RV cavity. To
achieve this, we can simply replace the head of task 1 by a new head for task 2.
The task head refers to the last convolutional layer of the U-net, which is 1 x 1
convolution with K-channel output, K denoting the number of classes.

We investigate three different ways for transfer learning. The first way is to
freeze the weights learnt at the encoder and only finetunes the decoder and task
head, using the annotations for task 2. This method is named as “SSL+Decoder”
and illustrated by Fig.2(b). The second way is to finetune all the weights
[4], including the encoder, decoder and task head. This method is named as
“SSL+All” and illustrated by Fig.2(c). The third way is perform multi-task
learning for finetuning. Two task heads are used, one for the pretext task and
the other for the new task. This is to avoid forgetting about the pretext task
while learning for the new task. This method is named as “SSL+4+MultiTask”
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and illustrated by Fig.2(d). The loss function for multi-task learning is formu-
lated as, L(0) = Liask, (x,y110) + B Liask, (x, y2|0), where 6 denotes the network
parameters, x denotes the image, y; denotes the label map of nine anatomical
positions for task 1, yo denotes the label map of anatomical structures manually
annotated by human experts for task 2, 0 denotes the weight.

3 Experiments and Results

Data: For self-supervised learning, short-axis and long-axis images of 3,825 sub-
jects were used, acquired from the UK Biobank. The typical image dimension is
208 x 180, with 1.82 x 1.82mm? in-plane resolution. The short-axis image stack
consists of ~10 slices. There is 1 slice for long-axis 4Ch view and 1 slice for 2Ch
view. Bounding boxes were automatically placed at nine anatomical positions
on the short-axis and long-axis 4Ch view images at end-diastole (ED) and end-
systole (ES). Each box was empirically set to 11 x 11 pixels and adjacent boxes
were 30 pixels apart. For transfer learning, 200 subjects with manual annota-
tions were used, which were randomly split into 100 subjects for training and 100
subjects for test. For short-axis images, LV, myocardium and RV were manually
annotated by experienced image analysts at ED and ES frames. For long-axis
4Ch view images, LV, myocardium, RV, LA and RA were manually annotated.

Implementation: The method was implemented using Tensorflow. For self-
supervised learning, the Adam optimiser was used, with a learning rate of 0.001,
a batch size of 20 image slices and 50,000 iterations. For transfer learning, the
same setting was used. For both cases, data augmentation was performed online,
including random rotation and scaling. For multi-task transfer learning, the
weight 0 was empirically set to 10 to emphasise the new task. As the input
datasets were not consistent for the two tasks (task 1 with 3,825 subjects, task
2 with much fewer and different subjects), training was implemented as that at
each iteration, task 1 was optimised for one sub-iteration, followed by optimis-
ing task 2 for (3 sub-iterations. Since stochastic optimisation was performed, this
was approximately equivalent to assigning a weight to task 2. Training multiple
tasks alternately is a commonly adopted practice for inconsistent data input [4].
We made sure that task 2 was trained for 50,000 sub-iterations to enable a fair
comparison. Finally, a U-net was also trained with exactly the same setting, but
initialised with random weights. This is our baseline method, “U-net-scratch”.

Short-Axis Image Segmentation: We evaluated the performance on two
transfer learning tasks, which are segmentations for short-axis and long-axis
images. Table1 compares the Dice metrics (averaged across LV, myocardium
and RV) for short-axis image segmentation between the U-net trained from
scratch and self-supervised learning methods. As it shows, even if we freeze
the encoder and only tune the decoder (SSL+Decoder), we can achieve a high
accuracy comparable to training a U-net from scratch. This indicates that SSL
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Table 1. Comparison of the Dice metrics for short-axis image segmentation. Column
1 lists the number of training subjects and manually annotated image slices. Columns
2 to 5 report the performance of the baseline method and different self-supervised

learning methods. Values are mean (standard deviation).

#subjects (#slices)|U-net-scratch|SSL+Decoder| SSL+All SSL+MultiTask
1(18) 0.361 (0.047) |0.515 (0.099) |0.618 (0.068) 0.704 (0.065)
5 (102) 0.811 (0.037) |0.837 (0.048) |0.844 (0.046) |0.852 (0.046)
10 (208) 0.859 (0.037) |0.860 (0.039) |0.873 (0.036) 0.875 (0.036)
50 (980) 0.876 (0.035) |0.871 (0.038) |0.884 (0.033)0.873 (0.037)
100 (1,936) 0.886 (0.030) |0.867 (0.037) 0.883 (0.035) |0.887 (0.031)

is able to learn good features at the encoder which are transferrable for the seg-
mentation task. The table also shows when we tune all the weights (SSL+All
and SSL+MultiTask), the segmentation accuracy is generally better than U-net-
scratch, especially when the number of training subjects is small. On average,
SSL+MultiTask performs the best.

. R ¢ b 3
n =10 (208) n =100 (1,936) Manual

n=5(102)

n=1(18) -

n =50 (980)

Fig. 3. Short-axis image segmentations for U-net-scratch and SSL+MultiTask with an
increasing number of training subjects (slices), as well as manual segmentations. The
yellow arrows indicate segmentation errors. (Color figure online)

Figure3 visualises exemplar segmentations for U-net-scratch and SSL-+
MultiTask with an increasing number of training subjects. It shows that when
n = 1, due to the extremely small training set, U-net-scratch completely fails
to segment the image. On the contrary, SSL+MultiTask is still able to seg-
ment some part of the LV and myocardium. When n increases to 5 or 10,
SSL+MultiTask outperforms U-net-scratch at details, for example, without RV
under-segmentation errors. However, when n increases to 50 or 100, the two
methods perform similar to each other. Figure4 plots quantitative metrics
including the Dice metric and mean contour distance error for each anatomi-
cal structure for the two methods. It shows a similar trend that at a small data
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setting (n < 10), SSL+MultiTask outperforms U-net-scratch for all the struc-
tures. When there are more training data (n > 50), their performances become
close to each other.

Dice: LV Dice: Myo 10 Dice: RV

0.9 0.9

0.8
0.7
0.6
0.5

[ Scratch 9 Scratch 04 9 Scratch
Emm SSL+MultiTask B SSL+MultiTask : B SSL+MultiTask

0.3

1 5 10 50 100 1 5 10 50 100 1 5 10 50 100
Training subjects Training subjects Training subjects
s Distance error (mm): LV 6 Distance error (mm): Myo 18 Distance error (mm): RV
7 Scratch 14 Scratch 16 Scratch
= SSL+MultiTask = SSL+MultiTask 14 = SSL+MultiTask
6 12
5 10 2
10
4 8
8
3 6 6
2 4 4
1 2 2
0 0 0
1 5 10 50 100 1 5 10 50 100 1 5 10 50 100
Training subjects Training subjects Training subjects

Fig. 4. Comparison of the Dice metrics and mean contour distance errors on short-axis
image segmentation for U-Net-scratch and SSL+MultiTask.

n=1(2) n=5(10) n=10(20) n =50 (100) n =100 (200) Manual

Fig. 5. Long-axis image segmentations for U-net-scratch and SSL+MultiTask with an
increasing number of training subjects (slices).

Long-Axis Image Segmentation: We performed similar experiments for
long-axis image segmentation. Table 2 reports the mean Dice overlap metrics.
It shows that with SSL, for most of the cases, the segmentation accuracy is
increased compared to U-net-scratch. Figure 5 visualises exemplar segmentation
results. It demonstrates that with limited training data, SSL+MultiTask gener-
ally produces better segmentations compared to U-net-scratch.
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Table 2. Comparison of Dice overlap metrics for long-axis image segmentation. Values

are mean (standard deviation).

#subjects (#slices)|U-net-scratch|SSL+Decoder| SSL+AIL SSL+MultiTask
1(2) 0.678 (0.132) |0.699 (0.069) |0.733 (0.081)/0.600 (0.122)
5 (10) 0.848 (0.080) |0.850 (0.068) |0.875 (0.051)/0.861 (0.049)
10 (20) 0.875 (0.044) |0.888 (0.039) |0.905 (0.039)0.889 (0.031)
50 (100) 0.922 (0.031) |0.914 (0.035) |0.925 (0.028) 0.926 (0.029)
100 (200) 0.930 (0.032) |0.924 (0.037) |0.933 (0.031) |0.934 (0.029)

4 Conclusions

In this paper, we propose a novel method that leverages self-supervised learning
for cardiac MR image segmentation. We formulate anatomical position predic-
tion as the pretext task. Experiments on short-axis and long-axis image seg-
mentation tasks demonstrate that with self-supervised learning, the proposed
method outperforms a standard U-net trained from scratch at the small data
setting and is of comparable performance at the large data setting. For future
work, we will explore other anatomically meaningful pretext tasks to increase
data efficiency in medical imaging applications.
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